Jump to content

NASA’s Juno: Science Results Offer First 3D View of Jupiter Atmosphere


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Hubble Space Telescope Home NASA’s Hubble Watches… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   4 Min Read NASA’s Hubble Watches Jupiter’s Great Red Spot Behave Like a Stress Ball
      Hubble Space Telescope data of Jupiter’s Great Red Spot spanning approximately 90 days. Credits:
      NASA, ESA, Amy Simon (NASA-GSFC); Image Processing: Joseph DePasquale (STScI) Astronomers have observed Jupiter’s legendary Great Red Spot (GRS), an anticyclone large enough to swallow Earth, for at least 150 years. But there are always new surprises – especially when NASA’s Hubble Space Telescope takes a close-up look at it.
      Hubble’s new observations of the famous red storm, collected 90 days between December 2023 to March 2024, reveal that the GRS is not as stable as it might look. The recent data show the GRS jiggling like a bowl of gelatin. The combined Hubble images allowed astronomers to assemble a time-lapse movie of the squiggly behavior of the GRS.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      This time-lapse movie is assembled from Hubble Space Telescope observations spanning approximately 90 days (between December 2023 and March 2024) when the giant planet Jupiter ranged from 391 million to 512 million miles from the Sun. Astronomers measured the Great Red Spot’s size, shape, brightness, color, and vorticity over a full oscillation cycle. The data reveal that the Great Red Spot is not as stable as it might look. It was observed going through an oscillation in its elliptical shape, jiggling like a bowl of gelatin. The cause of the 90-day oscillation is unknown. NASA, ESA, Amy Simon (NASA-GSFC); Video: Joseph DePasquale (STScI)
      Download this video

      “While we knew its motion varies slightly in its longitude, we didn’t expect to see the size oscillate. As far as we know, it’s not been identified before,” said Amy Simon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, lead author of the science paper published in The Planetary Science Journal. “This is really the first time we’ve had the proper imaging cadence of the GRS. With Hubble’s high resolution we can say that the GRS is definitively squeezing in and out at the same time as it moves faster and slower. That was very unexpected, and at present there are no hydrodynamic explanations.”
      Hubble monitors Jupiter and the other outer solar system planets every year through the Outer Planet Atmospheres Legacy program (OPAL) led by Simon, but these observations were from a program dedicated to the GRS. Understanding the mechanisms of the largest storms in the solar system puts the theory of hurricanes on Earth into a broader cosmic context, which might be applied to better understanding the meteorology on planets around other stars.
      Using Hubble Space Telescope data spanning approximately 90 days (between December 2023 and March 2024) when the giant planet Jupiter ranged from 391 million to 512 million miles from the Sun, astronomers measured the Great Red Spot’s size, shape, brightness, color, and vorticity over one full oscillation cycle. The data reveal that the Great Red Spot is not as stable as it might look. It was observed going through an oscillation in its elliptical shape, jiggling like a bowl of gelatin. The cause of the 90-day oscillation is unknown. NASA, ESA, Amy Simon (NASA-GSFC); Image Processing: Joseph DePasquale (STScI)
      Download this image

      Simon’s team used Hubble to zoom in on the GRS for a detailed look at its size, shape, and any subtle color changes. “When we look closely, we see a lot of things are changing from day to day,” said Simon. This includes ultraviolet-light observations showing that the distinct core of the storm gets brightest when the GRS is at its largest size in its oscillation cycle. This indicates less haze absorption in the upper atmosphere.
      “As it accelerates and decelerates, the GRS is pushing against the windy jet streams to the north and south of it,” said co-investigator Mike Wong of the University of California at Berkeley. “It’s similar to a sandwich where the slices of bread are forced to bulge out when there’s too much filling in the middle.” Wong contrasted this to Neptune, where dark spots can drift wildly in latitude without strong jet streams to hold them in place. Jupiter’s Great Red Spot has been held at a southern latitude, trapped between the jet streams, for the extent of Earth-bound telescopic observations.
      Using Hubble Space Telescope data spanning approximately 90 days (between December 2023 and March 2024) when the giant planet Jupiter ranged from 391 million to 512 million miles from the Sun, astronomers measured the Great Red Spot’s size, shape, brightness, color, and vorticity over a full oscillation cycle. The data reveal that the Great Red Spot is not as stable as it might look. It was observed going through an oscillation in its elliptical shape, jiggling like a bowl of gelatin. The cause of the 90-day oscillation is unknown. The observation is part of the observing programs led by Amy Simon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA, ESA, STScI, Amy Simon (NASA-GSFC); Image Processing: Joseph DePasquale (STScI)
      Download this image

      The team has continued watching the GRS shrink since the OPAL program began 10 years ago. They predict it will keep shrinking before taking on a stable, less-elongated, shape. “Right now it’s over-filling its latitude band relative to the wind field. Once it shrinks inside that band the winds will really be holding it in place,” said Simon. The team predicts that the GRS will probably stabilize in size, but for now Hubble only observed it for one oscillation cycle.
      The researchers hope that in the future other high-resolution images from Hubble might identify other Jovian parameters that indicate the underlying cause of the oscillation.
      The results are being presented at the 56th annual meeting of the American Astronomical Society Division for Planetary Sciences, in Boise, Idaho.
      Jupiter’s iconic Great Red Spot, a storm larger than Earth, has fascinated astronomers for over 150 years. But thanks to NASA’s Hubble Space Telescope, we’re now seeing this legendary storm in a whole new light. Recent observations show that the Great Red Spot is wobbling and fluctuating in size.
      NASA’s Goddard Space Flight Center; Lead Producer: Paul Morris The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Learn More

      Hubble Shows Winds in Jupiter’s Great Red Spot Are Speeding Up


      Telescopes and Spacecraft Join Forces to Probe Deep into Jupiter’s Atmosphere


      Hubble’s Grand Tour of the Outer Solar System

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contacts:
      Amy Simon
      NASA Goddard Space Flight Center, Greenbelt, MD
      Michael H. Wong
      University of California, Berkeley, Berkeley, CA
      Share








      Details
      Last Updated Oct 09, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Jupiter Missions Planetary Science Planets The Solar System Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Studying the Outer Planets and Moons



      Hubble Focus: Our Amazing Solar System


      Studying the cosmos for over a quarter century, the Hubble Space Telescope has made more than a million observations and…


      Hubble Posters


      View the full article
    • By NASA
      4 Min Read NASA Terminal Transmits First Laser Communications Uplink to Space 
      NASA's LCOT (Low-Cost Optical Terminal) located at the agency's Goddard Space Flight Center in Greenbelt, Md. Credits: NASA NASA’s LCOT (Low-Cost Optical Terminal), a ground station made of modified commercial hardware, transmitted its first laser communications uplink to the TBIRD (TeraByte Infrared Delivery), a tissue box-sized payload formerly in low Earth orbit.
      During the first live sky test, NASA’s LCOT produced enough uplink intensity for the TBIRD payload to identify the laser beacon, connect, and maintain a connection to the ground station for over three minutes. This successful test marks an important achievement for laser communications: connecting LCOT’s laser beacon from Earth to TBIRD required one milliradian of pointing accuracy, the equivalent of hitting a three-foot target from over eight American football fields away.
      The test was one of many laser communications achievements TBIRD made possible during its successful, two-year mission. Prior to its mission completion on Sept. 15, 2024, the payload transmitted at a record-breaking 200 gigabits per second. In an actual use case, TBIRD’s three-minute connection time with LCOT would be sufficient to return over five terabytes of critical science data, the equivalent of over 2,500 hours of high-definition video in a single pass. As the LCOT sky test demonstrates, the ultra-high-speed capabilities of laser communications will allow science missions to maintain their connection to Earth as they travel farther than ever before.
      Measurement data of the power, or “fluency,” of the connection between NASA’s LCOT (Low-Cost Optical Terminal) laser beacon and TBIRD’s (TeraByte Infrared Delivery) receiver provided by Massachusetts Institute of Technology Lincoln Laboratory (MIT-LL). LCOT and TBIRD maintained a sufficient connection for over three minutes — enough time for TBIRD to return over five terabytes of data. NASA/Dave Ryan NASA’s SCaN (Space Communications and Navigation) program office is implementing laser communications technology in various orbits, including the upcoming Artemis II mission, to demonstrate its potential impact in the agency’s mission to explore, innovate, and inspire discovery.
      “Optical, or laser, communications can transfer 10 to 100 times more data than radio frequency waves,” said Kevin Coggins, deputy associate administrator and SCaN program manager. “Literally, it’s the wave of the future, as it’ll enable scientists to realize an ever-increasing amount of data from their missions and will serve as our critical lifeline for astronauts traveling to and from Mars.” 
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      A recording of TBIRD’s (TeraByte Infrared Delivery) successful downlink from NASA’s LCOT (Low-Cost Optical Terminal) Wide Field Camera. The light saturation from the downlink caused a secondary reflection in the upper right of the video.NASA Historically, space missions have used radio frequencies to send data to and from space, but with science instruments capturing more data, communications assets must meet increasing demand. The infrared light used for laser communications transmits the data at a shorter wavelength than radio, meaning ground stations on Earth can send and receive more data per second. 
      The LCOT team continues to refine pointing capabilities through additional tests with NASA’s LCRD (Laser Communications Relay Demonstration). As LCOT and the agency’s other laser communications missions continue to reach new milestones in connectivity and accessibility, they demonstrate laser communications’ potential to revolutionize scientists’ access to new data about Earth, our solar system, and beyond. 
      “It’s a testament to the hard work and skill of the entire team,” said Dr. Haleh Safavi, project lead for LCOT. “We work with very complicated and sensitive transmission equipment that must be installed with incredible precision. These results required expeditious planning and execution at every level.” 
      NASA’s LCOT (Low-Cost Optical Terminal) at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, uses slightly modified commercial hardware to reduce the expense of implementing laser communications technology. NASA Experiments like TBIRD and LCRD are only two of SCaN’s multiple in-space demonstrations of laser communications, but a robust laser communications network relies on easily reconfigurable ground stations on Earth. The LCOT ground station showcases how the government and aerospace industry can build and deploy flexible laser communications ground stations to meet the needs of a wide variety of NASA and commercial missions, and how these ground stations open new doors for communications technology and extremely high data volume transmission. 
      NASA’s LCOT is developed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland. TBIRD was developed in partnership with the Massachusetts Institute of Technology Lincoln Laboratory (MIT-LL) in Lexington. TBIRD was flown and operated as a collaborative effort among NASA Goddard; NASA’s Ames Research Center in California’s Silicon Valley; NASA’s Jet Propulsion Laboratory in Southern California; MIT-LL; and Terran Orbital Corporation in Irvine, California. Funding and oversight for LCOT and other laser communications demonstrations comes from the (SCaN) Space Communications and Navigation  program office within the Space Operations Mission Directorate at NASA Headquarters in Washington. 
      About the Author
      Korine Powers
      Senior Writer and Education LeadKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, education and outreach, exploration activities, and more.
      Share
      Details
      Last Updated Oct 09, 2024 EditorKorine PowersContactKatherine Schauerkatherine.s.schauer@nasa.govLocationGoddard Space Flight Center Related Terms
      Space Communications Technology Communicating and Navigating with Missions Goddard Space Flight Center Space Communications & Navigation Program Space Operations Mission Directorate Technology Technology Demonstration View the full article
    • By NASA
      Engineered heart tissues in space showed impairments that led to increased arrhythmias and loss of muscle strength, changes similar to cardiac aging. This finding suggests that the engineered tissues, essentially an automated heart-on-a-chip platform, can be used to study cardiac issues in space and aging-related cardiovascular disease on Earth.

      Microgravity exposure is known to cause changes in cardiovascular function similar to those seen with aging on Earth. Engineered Heart Tissues assessed these changes using 3D cultured cardiac muscle tissue. The 3D cultures, grown with special scaffolds and derived from human cells, are better at reproducing the behavior of actual tissues than previous models. Results could support development of countermeasures for crew members on future long-duration space missions and development of drugs to treat cardiac diseases on Earth.

      A crew member conducts a media exchange in the tissue chambers for the Engineered Heart Tissue investigation.NASA A space-based and an airborne imaging spectrometer together make it possible to attribute the source of methane and carbon dioxide plumes to specific sectors, such as oil and gas or agriculture. Methane and carbon dioxide emissions are primary drivers of human-caused climate change. This finding could improve greenhouse gas budget and inform mitigation strategies.

      The space station’s Earth Surface Mineral Dust Source Investigation (EMIT) instrument was designed to determine the type and distribution of minerals in the dust of Earth’s arid regions, but researchers found that EMIT data also can identify specific sources of methane and carbon dioxide emissions. The space-based instrument can identify emissions over large areas and provide repeat observations that reduce uncertainty. The Airborne Visible/Infrared Imaging Spectrometer-3, a NASA Jet Propulsion Laboratory instrument, can quantify smaller emissions sources. Combining these observations provides more information on emission sources.

      A cluster of methane plumes detected by the Earth Surface Mineral Dust Source Investigation over approximately 150 square miles.NASA Even short periods of higher relative humidity can increase growth of fungi in spacecraft dust and change the diversity of species present. This finding suggests that moisture conditions can predict changes in fungal growth and composition in spacecraft and space habitats, helping to protect astronaut health and structure integrity.

      The space station contains a unique community of microbes, including many that reside in dust, much like in indoor environments on Earth. Aerosol Sampler collected airborne particles in the station’s cabin air, including dust, for examination on the ground. There are many potential sources of daily elevated moisture conditions on the space station and scientists need to understand how this affects the fungal and bacterial communities in spacecraft dust. The model described in the paper also could assess how other environmental factors such as microgravity and elevated carbon dioxide affect these microbes.

      An Aerosol Sampler collection device aboard the International Space Station. NASAView the full article
    • By NASA
      Learn Home Science Activation’s PLACES… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   5 min read
      Science Activation’s PLACES Team Facilitates Third Professional Learning Institute
      The NASA Science Activation program’s Place-Based Learning to Advance Connections, Education, and Stewardship (PLACES) project supports middle and high school educators to engage students in data-rich Earth science learning through the integration of NASA data sets, images, classroom lessons, and other assets. This project draws on a place-based approach as a means to increase “data fluency” — the ability and confidence to make sense of and use data. This means knowing when, how, and why to use data for a specific purpose, such as solving problems and communicating ideas grounded in evidence.
      As part of this effort, PLACES facilitated its third Professional Learning (PL) Summer Institute (SI) for 22 educators at the Gulf of Maine Research Institute (GMRI) in Portland, Maine the week of August 12th, 2024. This is the third PL Summer Institute the PLACES team has facilitated, each focusing on engaging educators in place-based, data-rich teaching and learning with NASA data and resources.
      The GMRI PL development and facilitation was a collaborative co-design effort between two NASA Science Activation projects (PLACES led by WestEd and the Learning Ecosystems Northeast project led by GMRI) and colleagues from the Concord Consortium and NASA Langley Research Center. During this PL, teachers took part in community science projects developed by GMRI to incorporate youth in ongoing research projects, including a mix of field- and classroom-based experiences that explored the phenomena of Hemlock Woolly Adelgid (HWA) and the changes to intertidal crab populations – two invasive species that are proliferating as a result of climate change. During two field-based experiences, teachers gathered primary data using protocols from GMRI’s Ecosystem Investigation Network and the NASA-sponsored program, GLOBE (Global Learning and Observations to Benefit the Environment). Teachers then explored these primary data using Concord Consortium’s Common Online Data Analysis Platform (CODAP) to better understand the geographic and temporal spread of these species. To connect their local experiences to global happenings, teachers then explored secondary data sets, including those sourced from the My NASA Data (MND – also supported by NASA Science Activation as part of the GLOBE Mission Earth project) Earth System Explorer (e.g., Normalized Difference Vegetation Index, salinity, sea surface temperature). The facilitation team also used the MND Data Literacy Cubes to encourage teachers to consider a multitude of diverse questions about place, data, and the phenomena. The GLOBE protocols supplemented existing GMRI data collection protocols, presenting new opportunities for teachers already experienced with HWA and Green Crabs. The MND data and Data Literacy Cubes moved teachers from questions they generated as part of their primary data collection towards new knowledge.
      Daily feedback from teachers highlighted their appreciation for the responsiveness of the facilitation team, as well as a growing curiosity and desire for using NASA resources such as protocols from GLOBE and data from MND’s Earth System Explorer. This is exciting to see as the teachers transition from the Summer Institute into a virtual Community of Practice during the school year. The Community of Practice engages them in peer-to-peer collaboration and dialogue as they develop, test, and give feedback on their own place-based, data-rich experiences using NASA data and resources. So far, teachers are planning to tackle a variety of topics ranging from ocean chemistry to human connections to the environment. Teachers indicated their interest in “making place-based experiences meaningful to our unique populations of students and having cultural representation in the classroom,” and focusing on “cross-school collaboration.” Preliminary evaluation data indicated that 76% of teachers thought their experiences with NASA resources during the SI helped them identify ways to bring data into their classroom. 85% of teachers indicated they feel a greater connection to NASA and knowledge of NASA resources for enhancing student understanding and engagement in science. Moving into the fall, teachers will take part in a Community of Practice, where they will work to implement a place-based, data-rich moment in their individual classrooms. In the summer of 2025, teachers will take part in a second summer institute where they will continue to learn more about implementing place-based, data-rich instruction.
      The PLACES GMRI Summer Institute was made possible by a large co-design, collaborative effort across our partner organizations. This included:
      Facilitation Team: Catherine Bursk (GMRI), Meggie Harvey (GMRI), Sara Salisbury (GMRI), Daniel Damelin (Concord Consortium) In-person Facilitation Support Team: Leigh Peake (GMRI), Karen Lionberger (WestEd), Kristin Hunter-Thomson (Dataspire), Angela Rizzi (NASA Langley) In-Person Team Member Participants: Janet Struble and Kevin Czaikowski (GLOBE, University of Toledo), Svetlana Darche (WestEd) Virtual Observers: Kirsten Daehler, Nicole Wong, Leticia Perez (WestEd), Tracy Ostrom (GLOBE, UC Berkeley), Lori Rubino-Hare (NAU) Additional support: Frieda Reichsman (Concord Consortium), Barbie Buckner and Jessia Taylor (NASA Langley), Sean Ryan (NAU), Lauren Shollenberger (NAU) PLACES is supported by NASA under cooperative agreement award number 80NSSC22M0005 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Teachers at the GMRI summer institute review NDVI data ranging from 2002 to 2022 and identify patterns and trends. Share








      Details
      Last Updated Oct 04, 2024 Editor NASA Science Editorial Team Location NASA Langley Research Center Related Terms
      Earth Science Grades 5 – 8 for Educators Grades 9-12 for Educators Opportunities For Educators to Get Involved Science Activation Explore More
      2 min read Culturally Inclusive Planetary Engagement in Colorado


      Article


      21 hours ago
      40 min read GPM Celebrates Ten Years of Observing Precipitation for Science and Society


      Article


      1 day ago
      2 min read New NASA eClips VALUE Bundles for Learners with Varied Needs


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Concepto artístico de la nave espacial Europa Clipper de la NASA.

      Créditos: NASA/JPL-Caltech. Read this release in English here.
      La NASA ofrecerá cobertura en directo, en inglés y en español, de las actividades previas al lanzamiento y del lanzamiento de Europa Clipper, la misión de la agencia para explorar Europa, una luna helada de Júpiter. La cobertura del lanzamiento se ofrecerá también en español. La NASA prevé que el lanzamiento se dé a las 12:31 p.m. EDT (hora del este) del jueves, 10 de octubre, a bordo de un cohete SpaceX Falcon Heavy desde el Complejo de Lanzamiento 39A en el Centro Espacial Kennedy de la NASA en Florida.
      Más allá de la Tierra, Europa, una luna de Júpiter, es considerada uno de los entornos con más potencial para la habitabilidad del sistema solar. Tras un viaje de aproximadamente 1.800 millones de millas (unos 2.900 millones de kilómetros), Europa Clipper entrará en órbita alrededor de Júpiter en abril de 2030. Desde ahí, la nave espacial llevará a cabo un estudio detallado de Europa para determinar si este mundo helado podría presentar condiciones adecuadas para la vida. Europa Clipper es la mayor nave espacial que la NASA ha desarrollado para una misión planetaria. Transporta un conjunto de nueve instrumentos y un experimento gravitatorio, los cuales investigarán un océano bajo la superficie de Europa que los científicos creen que contiene el doble de agua líquida que los océanos de la Tierra.
      Para consultar el calendario de eventos en directo y las plataformas en las que se retransmitirán, visita:
      https://go.nasa.gov/europaclipperlive
      El plazo para la acreditación de los medios de comunicación para la cobertura presencial de este lanzamiento ya finalizó. La política de acreditación de medios de la NASA está disponible en línea (en inglés). Si tienes preguntas sobre la acreditación de los medios de comunicación, envía un correo electrónico a: ksc-media-accreditat@mail.nasa.gov.
      La cobertura de la misión de la NASA es la siguiente (todas las horas son del este y están sujetas a cambios en función de las operaciones a tiempo real):
      Martes, 8 de octubre
      1 p.m. – Entrevistas presenciales, abiertas a los medios de comunicación acreditados para este lanzamiento.
      3:30 p.m. – Sesión informativa científica de Europa Clipper de la NASA con los siguientes participantes:
      Gina DiBraccio, directora en funciones, División de Ciencias Planetarias, Sede de la NASA Robert Pappalardo, científico de proyecto, Europa Clipper, Laboratorio de Propulsión a Chorro de la NASA (NASA JPL) Haje Korth, científico adjunto de proyecto, Europa Clipper, Laboratorio de Física Aplicada de la Universidad Johns Hopkins Cynthia Phillips, científica de proyecto, Europa Clipper, NASA JPL La cobertura de la conferencia de prensa científica se retransmitirá en directo en NASA+ y en el sitio web de la agencia, Aprende cómo ver contenidos de la NASA a través de diversas plataformas, incluidas las redes sociales.
      Los representantes de los medios de comunicación podrán formular preguntas tanto presencialmente como por teléfono. El espacio disponible en el auditorio para la participación en persona será limitado. Para obtener el número de teléfono y el código de acceso a la conferencia, los medios de comunicación deberán ponerse en contacto con la sala de prensa de la NASA en Kennedy a más tardar una hora antes del comienzo del acto: ksc-newsroom@mail.nasa.gov.
      Miércoles, 9 de octubre
      2 p.m. – Panel social del NASA Social en el centro Kennedy, con los siguientes participantes:
      Kate Calvin, científica jefe y asesora principal sobre el clima, sede de la NASA Caley Burke, analista de diseño de vuelos, Programa de Servicios de Lanzamiento de la NASA Erin Leonard, científica del proyecto Europa Clipper, NASA JPL Juan Pablo León, ingeniero de banco de pruebas de sistemas, Europa Clipper, NASA JPL (León es hispanohablante) Elizabeth Turtle, investigadora principal, instrumento de sistema de imágenes de Europa, Europa Clipper, APL Esta mesa redonda se transmitirá en directo a través de las cuentas de la NASA en YouTube, X y Facebook. Los miembros del público pueden hacer preguntas en línea publicando en las transmisiones en vivo de YouTube, X y Facebook o usando el hashtag #AskNASA.
      3:30 p.m. – Conferencia de prensa de la NASA previa al lanzamiento de Europa Clipper (tras la finalización de la revisión del estado de preparación para el lanzamiento), con los siguientes participantes:
      Administrador asociado de la NASA Jim Free Sandra Connelly, administradora adjunta, Dirección de Misiones Científicas, Sede de la NASA Tim Dunn, director de lanzamiento, Programa de Servicios de Lanzamiento de la NASA Julianna Scheiman, directora para misiones científicas de la NASA, SpaceX Jordan Evans, gerente de proyecto, Europa Clipper, NASA JPL Mike McAleenan, meteorólogo de lanzamiento, 45º Escuadrón Meteorológico, Fuerza Espacial de EE.UU. La conferencia de prensa previa al lanzamiento se retransmitirá en directo en NASA+, el sitio web de la agencia, la aplicación de la NASA, y YouTube.
      Los representantes de los medios de comunicación podrán formular preguntas tanto presencialmente como por teléfono. El espacio disponible en el auditorio para la participación en persona será limitado. Para obtener el número de teléfono y el código de acceso a la conferencia, los medios de comunicación deberán ponerse en contacto con la sala de prensa de la NASA en Kennedy a más tardar una hora antes del comienzo del acto: ksc-newsroom@mail.nasa.gov.
      5:30 p.m. – Transmisión del despliegue de Europa Clipper de la NASA a la plataforma de lanzamiento. La retransmisión en vivo (en inglés) estará disponible en NASA+, el sitio web de la agencia, la aplicación de la NASA, y YouTube.
      Jueves, 10 de octubre
      11:30 a.m. – La cobertura en inglés del lanzamiento empezará en NASA+ y el el sitio web de la agencia.
      11:30 a.m. – La cobertura en español del lanzamiento empezará en NASA+ y el canal de YouTube en español de la NASA.
      12:31 p.m. – Lanzamiento.
      Cobertura de audio
      El audio de las conferencias de prensa y de la cobertura del lanzamiento, ambos en inglés, se transmitirá por los circuitos «V» de la NASA, a los que se puede acceder marcando 321-867-1220, -1240 o -7135. El día del lanzamiento, el «audio de la misión», es decir, las actividades de la cuenta atrás sin los comentarios de los medios de NASA+ sobre el lanzamiento, se retransmitirá por el 321-867-7135.
      Cobertura de vídeo en directo previa al lanzamiento
      La NASA proporcionará una conexión de vídeo en directo del Complejo de Lanzamiento 39A aproximadamente 18 horas antes del despegue previsto de la misión en el canal de YouTube de la sala de prensa de la NASA en Kennedy. La transmisión será ininterrumpida hasta que comience la emisión del lanzamiento en NASA+.
      Cobertura del lanzamiento en el sitio web de la NASA
      La cobertura de la misión el día del lanzamiento estará disponible en el sitio web de la agencia. La cobertura incluirá enlaces a retransmisiones en directo (en español e inglés) y actualizaciones del blog que comenzarán no antes de las 10 a.m. del 10 de octubre, a medida que se cumplan los hitos de la cuenta regresiva. Poco después del despegue se podrá acceder a vídeos y fotos del lanzamiento en streaming a demanda.
      Siga la cobertura de la cuenta regresiva en el blog de Europa Clipper (en inglés). Si tiene alguna pregunta sobre la cobertura de la cuenta atrás, póngase en contacto con la sala de prensa Kennedy llamando al 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con María José Viñas: maria-jose.vinasgarcia@nasa.gov, Antonia Jaramillo: antonia.jaramillobotero@nasa.gov o Messod Bendayan: messod.c.bendayan@nasa.gov
      Asistencia virtual al lanzamiento
      Los miembros del público pueden registrarse para asistir virtualmente a este lanzamiento. El programa de invitados virtuales (en inglés) de la NASA para esta misión también incluye recursos curados de lanzamiento, notificaciones sobre oportunidades o cambios relacionados, y un sello para el pasaporte de invitado virtual de la NASA después del lanzamiento.
      Observación y participación en redes sociales
      Haz que la gente sepa que estás siguiendo la misión en X, Facebook e Instagram utilizando los hashtags #EuropaClipper y #NASASocial. También puedes mantenerte conectado siguiendo y etiquetando estas cuentas:
      X: @NASA, @EuropaClipper, @NASASolarSystem, @NASAJPL, @NASAKennedy, @NASA_LSP, @NASA_ES (en español)
      Facebook: NASA, NASA’s Europa Clipper, NASA’s JPL, NASA’s Launch Services Program, NASA en español
      Instagram: @NASA, @nasasolarsystem, @NASAKennedy, @NASAJPL, @NASA_ES (en español)
      Para más información en español sobre la misión:
      https://ciencia.nasa.gov/europaclipper
      -fin-
      Karen Fox / Molly Wasser/ María José Viñas
      Sede, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser.nasa.gov  / maria-jose.vinasgarcia@nasa.gov
      Leejay Lockhart
      Centro Espacial Kennedy, Florida
      321-747-8310
      leejay.lockhart@nasa.gov
      Share
      Details
      Last Updated Oct 03, 2024 LocationKennedy Space Center Related Terms
      Missions Europa Europa Clipper Jupiter Jupiter Moons View the full article
  • Check out these Videos

×
×
  • Create New...