Jump to content

NASA to Host Briefing on Webb Telescope Engineering, Deployments


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s VIPER – short for the Volatiles Investigating Polar Exploration Rover – sits assembled inside the cleanroom at the agency’s Johnson Space Center.Credit: NASA Following a comprehensive internal review, NASA announced Wednesday its intent to discontinue development of its VIPER (Volatiles Investigating Polar Exploration Rover) project.
      NASA stated cost increases, delays to the launch date, and the risks of future cost growth as the reasons to stand down on the mission. The rover was originally planned to launch in late 2023, but in 2022, NASA requested a launch delay to late 2024 to provide more time for preflight testing of the Astrobotic lander. Since that time, additional schedule and supply chain delays pushed VIPER’s readiness date to September 2025, and independently its CLPS (Commercial Lunar Payload Services) launch aboard Astrobotic’s Griffin lander also has been delayed to a similar time. Continuation of VIPER would result in an increased cost that threatens cancellation or disruption to other CLPS missions. NASA has notified Congress of the agency’s intent.
      “We are committed to studying and exploring the Moon for the benefit of humanity through the CLPS program,” said Nicola Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “The agency has an array of missions planned to look for ice and other resources on the Moon over the next five years. Our path forward will make maximum use of the technology and work that went into VIPER, while preserving critical funds to support our robust lunar portfolio.”
      Moving forward, NASA is planning to disassemble and reuse VIPER’s instruments and components for future Moon missions. Prior to disassembly, NASA will consider expressions of interest from U.S. industry and international partners by Thursday, Aug. 1, for use of the existing VIPER rover system at no cost to the government. Interested parties should contact HQ-CLPS-Payload@mail.nasa.gov after 10 a.m. EDT on Thursday, July 18. The project will conduct an orderly close out through spring 2025.
      Astrobotic will continue its Griffin Mission One within its contract with NASA, working toward a launch scheduled for no earlier than fall 2025. The landing without VIPER will provide a flight demonstration of the Griffin lander and its engines.
      NASA will pursue alternative methods to accomplish many of VIPER’s goals and verify the presence of ice at the lunar South Pole. A future CLPS delivery – the Polar Resources Ice Mining Experiment-1 (PRIME-1) — scheduled to land at the South Pole during the fourth quarter of 2024, will search for water ice and carry out a resource utilization demonstration using a drill and mass spectrometer to measure the volatile content of subsurface materials.
      Additionally, future instruments as part of NASA’s crewed missions – for example, the Lunar Terrain Vehicle — will allow for mobile observations of volatiles across the south polar region, as well as provide access for astronauts to the Moon’s permanently shadowed regions for dedicated sample return campaigns. The agency will also use copies of three of VIPER’s four instruments for future Moon landings on separate flights.
      The VIPER rover was designed to search Earth’s Moon for ice and other potential resources – in support of NASA’s commitment to study the Moon and help unravel some of the greatest mysteries of our solar system. Through NASA’s lunar initiatives, including Artemis human missions and CLPS, NASA is exploring more of the Moon than ever before using highly trained astronauts, advanced robotics, U.S. commercial providers, and international partners.
      For more information about VIPER, visit:
      https://www.nasa.gov/viper
      -end-
      Karen Fox / Erin Morton
      Headquarters, Washington
      202-358-1600 / 202-805-9393
      karen.c.fox@nasa.gov / erin.morton@nasa.gov
      Share
      Details
      Last Updated Jul 17, 2024 LocationNASA Headquarters Related Terms
      VIPER (Volatiles Investigating Polar Exploration Rover) Commercial Lunar Payload Services (CLPS) Earth's Moon Science Mission Directorate View the full article
    • By NASA
      Digital content creators are invited to register to attend the launch of the ninth SpaceX Dragon spacecraft and Falcon 9 rocket that will carry astronauts to the International Space Station for a science expedition mission. This mission is part of NASA’s Commercial Crew Program. 
      Launch of NASA’s SpaceX Crew-9 mission is targeted for no earlier than mid-August from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. The launch will carry NASA astronauts Zena Cardman, commander; Nick Hague, pilot; and Stephanie Wilson, mission specialist; along with Roscosmos cosmonaut Alexander Gorbunov, mission specialist. 
      If your passion is to communicate and engage the world online, then this is the event for you! Seize the opportunity to see and share the #Crew9 mission launch. 
      A maximum of 50 social media users will be selected to attend this two-day event and will be given access similar to news media. 
      NASA Social participants will have the opportunity to: 
      View a crewed launch of the SpaceX Falcon 9 rocket and Dragon spacecraft  Tour NASA facilities at Kennedy Space Center  Meet and interact with Crew-9 subject matter experts  Meet fellow space enthusiasts who are active on social media  Registration for this event opens on Wednesday, July 17, and the deadline to apply is at 10 a.m. EDT on Monday, July 22. All social applications will be considered on a case-by-case basis.
      APPLY NOW 
      Do I need to have a social media account to register? 
       Yes. This event is designed for people who: 
      Actively use multiple social networking platforms and tools to disseminate information to a unique audience.  Regularly produce new content that features multimedia elements.  Have the potential to reach a large number of people using digital platforms, or reach a unique audience, separate and distinctive from traditional news media and/or NASA audiences.  Must have an established history of posting content on social media platforms.  Have previous postings that are highly visible, respected and widely recognized.  Users on all social networks are encouraged to use the hashtag #NASASocial and #Crew9. Updates and information about the event will be shared on X via @NASASocial and @NASAKennedy, and via posts to Facebook and Instagram. 
      How do I register? 
      Registration for this event opens on Wednesday, July 17, and the deadline to apply is at 10 a.m. EDT on Monday, July 22. All social applications will be considered on a case-by-case basis.
      Can I register if I am not a U.S. citizen? 
      Because of the security deadlines, registration is limited to U.S. citizens. If you have a valid permanent resident card, you will be processed as a U.S. citizen. 
      When will I know if I am selected? 
      After registrations have been received and processed, an email with confirmation information and additional instructions will be sent to those selected. We expect to send the acceptance notifications by August 7.
      What are NASA Social credentials? 
      All social applications will be considered on a case-by-case basis. Those chosen must prove through the registration process they meet specific engagement criteria. 
      If you do not make the registration list for this NASA Social, you still can attend the launch offsite and participate in the conversation online. Find out about ways to experience a launch here. 
      What are the registration requirements? 
      Registration indicates your intent to travel to NASA’s Kennedy Space Center in Florida and attend the two-day event in person. You are responsible for your own expenses for travel, accommodations, food, and other amenities. 
      Some events and participants scheduled to appear at the event are subject to change without notice. NASA is not responsible for loss or damage incurred as a result of attending. NASA, moreover, is not responsible for loss or damage incurred if the event is cancelled with limited or no notice. Please plan accordingly. 
      Kennedy is a government facility. Those who are selected will need to complete an additional registration step to receive clearance to enter the secure areas. 
      IMPORTANT: To be admitted, you will need to provide two forms of unexpired government-issued identification; one must be a photo ID and match the name provided on the registration. Those without proper identification cannot be admitted. 
      For a complete list of acceptable forms of ID, please visit: NASA Credentialing Identification Requirements. 
      All registrants must be at least 18 years old. 
      What if the launch date changes? 
      Many different factors can cause a scheduled launch date to change multiple times. If the launch date changes, NASA may adjust the date of the NASA Social accordingly to coincide with the new target launch date. NASA will notify registrants of any changes by email. 
      If the launch is postponed, attendees will be invited to attend a later launch date. NASA cannot accommodate attendees for delays beyond 72 hours. 
      NASA Social attendees are responsible for any additional costs they incur related to any launch delay. We strongly encourage participants to make travel arrangements that are refundable and/or flexible. 
      What if I cannot come to the Kennedy Space Center? 
      If you cannot come to the Kennedy Space Center and attend in person, you should not register for the NASA Social. You can follow the conversation online using #NASASocial.  
      You can watch the launch on NASA+ or plus.nasa.gov. NASA will provide regular launch and mission updates on @NASA, @NASAKennedy, and @Commercial_Crew, as well as on NASA’s Commercial Crew Program blog. 
      If you cannot make this NASA Social, don’t worry; NASA is planning many other Socials in the near future at various locations! 
      Keep Exploring Discover More Topics From NASA
      International Space Station
      Launch Pad 39B
      Kennedy Space Center
      Commercial Crew Program
      View the full article
    • By NASA
      Official NASA’s SpaceX Crew-9 portraits with Zena Cardman, Nick Hague, Stephanie Wilson and Aleksandr Gorbunov. Credit: NASA Media accreditation now is open for the launch of NASA’s ninth rotational mission of a SpaceX Falcon 9 rocket and Dragon spacecraft that will carry astronauts to the International Space Station for a science expedition. This mission is part of NASA’s Commercial Crew Program.
      Launch of NASA’s SpaceX Crew-9 mission is targeted for no earlier than mid-August from Launch Complex 39A at the agency’s Kennedy Space Center in Florida, pending completion of the company’s ongoing Falcon 9 investigation. Crew safety and mission assurance are top priorities for NASA and its partners.
      The launch will carry NASA astronauts Zena Cardman, commander; Nick Hague, pilot; and Stephanie Wilson, mission specialist; along with Roscosmos cosmonaut Alexander Gorbunov, mission specialist. This is the first spaceflight for Cardman and Gorbunov, the second mission to the orbiting laboratory for Hague, and fourth spaceflight for Wilson, who has spent 42 days in space aboard three space shuttle Discovery missions – STS-120, STS-121, and STS-131.
      U.S. media, international media without U.S. citizenship, and U.S. citizens representing international media organizations must apply by 11:59 p.m. EDT on Wednesday, July 31. All accreditation requests must be submitted online at:
      https://media.ksc.nasa.gov
      NASA’s media accreditation policy is online. For questions about accreditation or special logistical requests, email: ksc-media-accreditat@mail.nasa.gov. Requests for space for satellite trucks, tents, or electrical connections are due by Thursday, Aug. 1.
      For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.
      For launch coverage and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      Share
      Details
      Last Updated Jul 17, 2024 LocationNASA Headquarters Related Terms
      Humans in Space Commercial Crew Commercial Space International Space Station (ISS) ISS Research Johnson Space Center Kennedy Space Center View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      An image of a new lodge on Anishnaabe lands in Ontario, Canada, 2023. NASA NASA has been selected by the International Astronautical Federation to receive its 2024 “3G” Diversity Award, which recognizes organizations for their contributions to fostering geographic, generational, and gender diversity in the space sector.
      NASA’s Indigenous Community-Based Education (CBE) Program is a consortium of partnerships between NASA and numerous, diverse Indigenous communities which co-create unique educational programs for the youth. Through these partnerships, which have been cultivated for the past two decades, Indigenous Knowledge and Western science come together in a community-based way to support the development of learners’ cultural and science, technology, engineering, and mathematics (STEM) identities.
      The Indigenous CBE Program is part of NASA’s Minority University Research and Education Project (MUREP) American Indian and Alaska Native STEM Engagement activity and is supported by NASA’s Astrobiology Program and Planetary Science Division.
      The Indigenous CBE Program also works toward more equitable practices in science and supports a diverse workforce by offering working groups that connect Indigenous and Western scientists and educators, as well as mentoring for emerging Indigenous STEM scholars.
      “Relationships and collaboration are at the heart of this work,” said Daniella Scalice, NASA lead for the Indigenous CBE Program. “This award is shared with all my community-based partners. The women I work with who are serving their youth and community every day – they are the real heroes.”
      “NASA has had a longstanding commitment to equity in STEM education and research.” said Torry Johnson, deputy associate administrator of STEM Engagement Programs at NASA Headquarters. “MUREP American Indian and Alaska Native STEM Engagement provides avenues for NASA to build and nurture relationships, new partnerships, and collaborations with Indigenous communities, and to empower the next generation of Indigenous STEM leaders.”
      Starting in January, awardees were nominated to the International Astronautical Federation by representatives from other member organizations. NASA will receive the award during the International Astronautical Federation’s annual conference in October.
      For more information on NASA’s MUREP American Indian and Alaska Native STEM Engagement program, visit:
      https://go.nasa.gov/3vEyhOp
      Share
      Details
      Last Updated Jul 17, 2024 Related Terms
      General Explore More
      1 min read Robotic Assembly and Outfitting for NASA Space Missions
      Article 21 hours ago 1 min read Telepong
      Article 2 days ago 3 min read NASA Transmits Hip-Hop Song to Deep Space for First Time
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      In this time-lapse video of a test conducted at JPL in June 2023, an engineering model of the Planetary Instrument for X-ray Lithochemistry (PIXL) instrument aboard NASA’s Perseverance Mars rover places itself against a rock to collect data. NASA/JPL-Caltech Artificial intelligence is helping scientists to identify minerals within rocks studied by the Perseverance rover.
      Some scientists dream of exploring planets with “smart” spacecraft that know exactly what data to look for, where to find it, and how to analyze it. Although making that dream a reality will take time, advances made with NASA’s Perseverance Mars rover offer promising steps in that direction.
      For almost three years, the rover mission has been testing a form of artificial intelligence that seeks out minerals in the Red Planet’s rocks. This marks the first time AI has been used on Mars to make autonomous decisions based on real-time analysis of rock composition.
      PIXL, the white instrument at top left, is one of several science tools located on the end of the robotic arm aboard NASA’s Perseverance rover. The Mars rover’s left navcam took the images that make up this composite on March 2, 2021NASA/JPL-Caltech The software supports PIXL (Planetary Instrument for X-ray Lithochemistry), a spectrometer developed by NASA’s Jet Propulsion Laboratory in Southern California. By mapping the chemical composition of minerals across a rock’s surface, PIXL allows scientists to determine whether the rock formed in conditions that could have been supportive of microbial life in Mars’ ancient past.
      Called “adaptive sampling,” the software autonomously positions the instrument close to a rock target, then looks at PIXL’s scans of the target to find minerals worth examining more deeply. It’s all done in real time, without the rover talking to mission controllers back on Earth.
      “We use PIXL’s AI to home in on key science,” said the instrument’s principal investigator, Abigail Allwood of JPL. “Without it, you’d see a hint of something interesting in the data and then need to rescan the rock to study it more. This lets PIXL reach a conclusion without humans examining the data.”
      This image of a rock target nicknamed “Thunderbolt Peak” was created by NASA’s Perseverance Mars rover using PIXL, which determines the mineral composition of rocks by zapping them with X-rays. Each blue dot in the image represents a spot where an X-ray hit.NASA/JPL-Caltech/DTU/QUT Data from Perseverance’s instruments, including PIXL, helps scientists determine when to drill a core of rock and seal it in a titanium metal tube so that it, along with other high-priority samples, could be brought to Earth for further study as part of NASA’s Mars Sample Return campaign.
      Adaptive sampling is not the only application of AI on Mars. About 2,300 miles (3,700 kilometers) from Perseverance is NASA’s Curiosity, which pioneered a form of AI that allows the rover to autonomously zap rocks with a laser based on their shape and color. Studying the gas that burns off after each laser zap reveals a rock’s chemical composition. Perseverance features this same ability, as well as a more advanced form of AI that enables it to navigate without specific direction from Earth. Both rovers still rely on dozens of engineers and scientists to plan each day’s set of hundreds of individual commands, but these digital smarts help both missions get more done in less time.
      “The idea behind PIXL’s adaptive sampling is to help scientists find the needle within a haystack of data, freeing up time and energy for them to focus on other things,” said Peter Lawson, who led the implementation of adaptive sampling before retiring from JPL. “Ultimately, it helps us gather the best science more quickly.”
      Using AI to Position PIXL
      AI assists PIXL in two ways. First, it positions the instrument just right once the instrument is in the vicinity of a rock target. Located at the end of Perseverance’s robotic arm, the spectrometer sits on six tiny robotic legs, called a hexapod. PIXL’s camera repeatedly checks the distance between the instrument and a rock target to aid with positioning.
      Temperature swings on Mars are large enough that Perseverance’s arm will expand or contract a microscopic amount, which can throw off PIXL’s aim. The hexapod automatically adjusts the instrument to get it exceptionally close without coming into contact with the rock.
      “We have to make adjustments on the scale of micrometers to get the accuracy we need,” Allwood said. “It gets close enough to the rock to raise the hairs on the back of an engineer’s neck.”
      Making a Mineral Map
      Once PIXL is in position, another AI system gets the chance to shine. PIXL scans a postage-stamp-size area of a rock, firing an X-ray beam thousands of times to create a grid of microscopic dots. Each dot reveals information about the chemical composition of the minerals present.
      Minerals are crucial to answering key questions about Mars. Depending on the rock, scientists might be on the hunt for carbonates, which hide clues to how water may have formed the rock, or they may be looking for phosphates, which could have provided nutrients for microbes, if any were present in the Martian past.
      There’s no way for scientists to know ahead of time which of the hundreds of X-ray zaps will turn up a particular mineral, but when the instrument finds certain minerals, it can automatically stop to gather more data — an action called a “long dwell.” As the system improves through machine learning, the list of minerals on which PIXL can focus with a long dwell is growing.
      “PIXL is kind of a Swiss army knife in that it can be configured depending on what the scientists are looking for at a given time,” said JPL’s David Thompson, who helped develop the software. “Mars is a great place to test out AI since we have regular communications each day, giving us a chance to make tweaks along the way.”
      When future missions travel deeper into the solar system, they’ll be out of contact longer than missions currently are on Mars. That’s why there is strong interest in developing more autonomy for missions as they rove and conduct science for the benefit of humanity.
      More About the Mission
      A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith (broken rock and dust).
      Subsequent NASA missions, in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      JPL, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.
      For more about Perseverance:
      mars.nasa.gov/mars2020/
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      202-358-1600 / 202-358-1501
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      2024-099
      Share
      Details
      Last Updated Jul 16, 2024 Related Terms
      Perseverance (Rover) Astrobiology High-Tech Computing Jet Propulsion Laboratory Mars Mars 2020 Radioisotope Power Systems (RPS) Robotics Science-enabling Technology Explore More
      1 min read NASA Science Activation Teams Present at National Rural STEM Summit
      NASA Science Activation (SciAct) teams participated in the National Rural STEM (Science, Technology, Engineering, &…
      Article 2 weeks ago 4 min read NASA’s Planetary Radar Tracks Two Large Asteroid Close Approaches
      Article 2 weeks ago 3 min read NASA’s ECOSTRESS Maps Burn Risk Across Phoenix Streets
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...