Jump to content

ESA acts to make air travel greener


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      30 years ago, on 16 July 1994, astronomers watched in awe as the first of many pieces of the Shoemaker-Levy 9 comet slammed into Jupiter with incredible force. The event sparked intense interest in the field of planetary defence as people asked: “Could we do anything to prevent this happening to Earth?”
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This image shows an aviation version of a smartphone navigation app that makes suggestions for an aircraft to fly an alternate, more efficient route. The new trajectories are based on information available from NASA’s Digital Information Platform and processed by the Collaborative Departure Digital Rerouting tool.NASA Just like your smartphone navigation app can instantly analyze information from many sources to suggest the best route to follow, a NASA-developed resource is now making data available to help the aviation industry do the same thing.
      To assist air traffic managers in keeping airplanes moving efficiently through the skies, information about weather, potential delays, and more is being gathered and processed to support decision making tools for a variety of aviation applications.
      Appropriately named the Digital Information Platform (DIP), this living database hosts key data gathered by flight participants such as airlines or drone operators. It will help power additional tools that, among other benefits, can save you travel time.
      Ultimately, the aviation industry… and even the flying public, will benefit from what we develop.
      Swati Saxena
      NASA Aerospace Engineer
      “Through DIP we’re also demonstrating how to deliver digital services for aviation users via a modern cloud-based, service-oriented architecture,” said Swati Saxena, DIP project manager at NASA’s Ames Research Center in California.
      The intent is not to compete with others. Instead, the hope is that industry will see DIP as a reference they can use in developing and implementing their own platforms and digital services.
      “Ultimately, the aviation industry – the Federal Aviation Administration, commercial airlines, flight operators, and even the flying public – will benefit from what we develop,” Saxena said.
      The platform and digital services have even more benefits than just saving some time on a journey.
      For example, NASA recently collaborated with airlines to demonstrate a traffic management tool that improved traffic flow at select airports, saving thousands of pounds of jet fuel and significantly reducing carbon emissions.
      Now, much of the data gathered in collaboration with airlines and integrated on the platform is publicly available. Users who qualify can create a guest account and access DIP data at a new website created by the project.
      It’s all part of NASA’s vision for 21st century aviation involving revolutionary next-generation future airspace and safety tools.
      Managing Future Air Traffic
      During the 2030s and beyond, the skies above the United States are expected to become much busier.
      Facing this rising demand, the current National Airspace System – the network of U.S. aviation infrastructure including airports, air navigation facilities, and communications – will be challenged to keep up. DIP represents a key piece of solving that challenge.
      NASA’s vision for future airspace and safety involves new technology to create a highly automated, safe, and scalable environment.
      What this vision looks like is a flight environment where many types of vehicles and their pilots, as well as air traffic managers, use state-of-the-art automated tools and systems that provide highly detailed and curated information.
      These tools leverage new capabilities like machine learning and artificial intelligence to streamline efficiency and handle the increase in traffic expected in the coming decades.
      Digital Services Ecosystem in Action
      To begin implementing this new vision, our aeronautical innovators are evaluating their platform, DIP, and services at several airports in Texas. This initial stage is a building block for larger such demonstrations in the future.
      “These digital services are being used in the live operational environment by our airline partners to improve efficiency of the current airspace operations,” Saxena said. “The tools are currently in use in the Dallas/Fort Worth area and will be deployed in the Houston airspace in 2025.”
      The results from these digital tools are already making a difference.
      Proven Air Traffic Results
      During 2022, a NASA machine learning-based tool named Collaborative Digital Departure Rerouting, designed to improve the flow of air traffic and prevent flight delays, saved more than 24,000 lbs. (10,886 kg.) of fuel by streamlining air traffic in the Dallas area.
      If such tools were used across the entire country, the improvements made in efficiency, safety, and sustainability would make a notable difference to the flying public and industry.
      “Continued agreements with airlines and the aviation industry led to the creation and expansion of this partnership ecosystem,” Saxena said. “There have been benefits across the board.”
      DIP was developed under NASA’s Airspace Operations and Safety Program.
      Learn about NASA’s Collaborative Digital Departure Rerouting tool and how it uses information from the Digital Information Platform to provide airlines with routing options similar to how drivers navigate using cellphone apps. About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      2 min read NASA Prepares for Air Taxi Passenger Comfort Studies
      Article 2 weeks ago 2 min read Hypersonic Technology Project Overview
      Article 3 weeks ago 2 min read Hypersonics Technical Challenges
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Jul 12, 2024 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Air Traffic Management – Exploration Air Traffic Solutions Airspace Operations and Safety Program View the full article
    • By NASA
      Portrait of retired NASA astronaut Joe Engle wearing flight suit in front of an X-15 fighter circa 1963. Retired NASA astronaut and U.S. Air Force Maj. Gen. Joe Engle died July 10, surrounded by his family at home in Houston. Among his many honors, he is the only astronaut to pilot both the X-15 and space shuttle. He was 91.
      Engle became an astronaut at age 32 while flying the X-15 for the U.S. Air Force, becoming the youngest pilot ever to qualify as an astronaut. When selected as a NASA astronaut candidate in 1966, he was the only person selected that was already engaged in spaceflight operations. He was the last surviving X-15 pilot.
      “A natural pilot, Gen. Joe Engle helped humanity’s dreams take flight – in the X-15 program, the Apollo Program, and as one of the first commanders in the Space Shuttle Program,” said NASA Administrator Bill Nelson. “He was one of the first astronauts I met at NASA’s Johnson Space Center in Houston. I’ll never forget his big smile, his warmth, and his courage. We all will miss him.” 
      Engle was born in Dickinson County, Kansas, and attended the University of Kansas, Lawrence, where he graduated with a degree in Aeronautical Engineering in 1955. He received his commission through the Air Force Reserve Officers Training Course, earning his pilot wings in 1958.
      As a NASA astronaut, he supported the Apollo Program, and was backup lunar module pilot for Apollo 14. In 1977, he served as commander of the space shuttle Enterprise, which used a modified Boeing 747 shuttle carrier aircraft to release Enterprise for approach and landing tests. In November 1981, he commanded the second flight of the space shuttle Columbia. He was the first and only pilot to manually fly an aerospace vehicle from Mach 25 to landing. He accumulated the last of his 224 hours in space when he commanded the space shuttle Discovery in August 1985, one of the most challenging shuttle missions ever. On that mission the crew deployed three commercial satellites and retrieved, repaired, and redeployed another malfunctioning satellite that had been launched on a previous shuttle mission.
      “As we mourn the immense loss of Joe, we’re thankful for his notable contributions to the advancement of human spaceflight,” said Vanessa Wyche, center director, NASA Johnson. “Joe’s accomplishments and legacy of perseverance will continue to inspire and impact generations of explorers for years to come.” 
      Engle flew more than 180 different aircraft types and logged more than 14,000 flight hours. His military decorations include the Department of Defense Distinguished Service Medal, U.S. Air Force Distinguished Service Medal, and the Air Force Distinguished Flying Cross with Oak Leaf Cluster. He has received the NASA Distinguished Service Medal and Space Flight Medal, as well as the Harmon International Aviation Trophy, the Collier Trophy, the Goddard Space Trophy, the Gen.
      Thomas D. White Space Trophy, and the Kinchelow Experimental Test Pilot’s Trophy. In 1992, he was inducted into the Aerospace Walk of Honor.
      “Joe Henry was a loving husband, father, and grandfather. Blessed with natural piloting skills, General Joe, as he was known to many, was at his happiest in any cockpit. Always with a smile, he lived a fulfilled life as a proud American, U.S. Air Force pilot, astronaut, and Kansas Jayhawk,” said his wife, Jeanie Engle. “His passing leaves a tremendous loss in our hearts. We take comfort that he has joined Tom Stafford and George Abbey, two of the best friends anyone could ask for.”
      Learn more about Engle’s life as an astronaut and pilot:
      https://www.nasa.gov/aeronautics/the-x-15-the-pilot-and-the-space-shuttle/
      -end-
      Faith McKie / Cheryl Warner
      Headquarters, Washington
      202-358-1600
      faith.d.mckie@nasa.gov / cheryl.m.warner@nasa.gov
      Chelsey Ballarte / Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      chelsey.n.ballarte@nasa.gov / courtney.m.beasley@nasa.gov  
      View the full article
    • By NASA
      ESA’s (European Space Agency) Ariane 6 rocket launches NASA’s CURIE CubeSat from Europe’s Spacesport, the Guiana Space Center in Kourou, French Guiana on Tuesday, July 9, 2024. Photo credit: ESA/S. Corvaja NASA launched CURIE (CubeSat Radio Interferometry Experiment) as a rideshare payload on the inaugural flight of ESA’s (European Space Agency) Ariane 6 rocket, which launched at 4 p.m. GFT on July 9 from Europe’s Spaceport, the Guiana Space Center in Kourou, in French Guiana.
      Designed by a team from the University of California, Berkeley, CURIE will use radio interferometry to study the primary drivers of space weather. 
      CubeSats are built using standardized units, with one unit, or 1U, measuring about 10 centimeters in length, width, and height. The two-satellite CURIE mission launched as a 6U before separating into two separate spacecraft, each a 3U. The spacecraft will provide two separate vantage points to measure the same radio waves coming from the Sun and other sources in the sky. 
      NASA’s CubeSat Launch Initiative selected CURIE in 2020 during the initiative’s 11th round of applications. NASA’s Launch Services Program, in collaboration with ESA, designated CURIE as one of eleven payloads supplied by space agencies, commercial companies, and universities for the first flight of ESA’s Ariane 6 rocket. 
      Image Credit:  ESA/M. Pédoussaut
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Tim Campbell, a NASA solar system ambassador, shares highlights of a moon rock with visitors inside the Journey to Tomorrow traveling exhibit. Credit: NASA/Christopher Hartenstine NASA’s Glenn Research Center staff traveled to Michigan for the Selfridge Air National Guard Base air show, open house, and STEAM Expo, June 8 and 9. NASA’s Journey to Tomorrow, a 53-foot traveling exhibit, was a popular feature that showcased exploration in air and space. Additionally, experts from NASA’s Fission Surface Power project shared information on the agency’s current and future work in this area.  
      Lindsay Kaldon, project manager for the Fission Surface Power project, left, joined the air show’s broadcast to discuss NASA’s Technology Demonstration Missions portfolio and pathways to STEAM careers at NASA.  Credit: NASA/Christopher Hartenstine Members of NASA’s SLS (Space Launch System) outreach team supported hands-on engagement in the STEAM Expo hangar. Trudy Kortes, director of Technology Demonstrations for NASA’s Space Technology Mission Directorate, and Lindsay Kaldon, project manager for the Fission Surface Power project, joined the air show’s broadcast to discuss NASA’s Technology Demonstration Missions portfolio and pathways to STEAM careers at NASA.  
      Return to Newsletter Explore More
      1 min read NASA Glenn Welcomes Summer Student Interns 
      Article 15 mins ago 7 min read Spectral Energies is a NASA SBIR/STTR-Funded Tech that Could Change the Way We Fly
      Article 1 hour ago 3 min read Happy Birthday, Meatball! NASA’s Iconic Logo Turns 65
      Article 1 day ago View the full article
  • Check out these Videos

×
×
  • Create New...