Members Can Post Anonymously On This Site
Watch NASA’s SpaceX Crew-3 Mission Launch on Oct. 31 (Trailer)
-
Similar Topics
-
By Space Force
The U.S. Army’s Joint Tactical Ground Station missile warning system mission officially transferred to the U.S. Space Force Oct. 1.
View the full article
-
By NASA
NASA logoCredits: NASA NASA has selected four small explorer missions to conduct concept studies. These studies aim to expand knowledge of the dynamics of the Sun and related phenomena, such as coronal mass ejections, aurora, and solar wind to better understand the Sun-Earth connection.
Any missions selected to move forward after the concept studies are conducted will join the current heliophysics mission fleet, which not only provides deeper insight into the mechanics of our universe, but also offers critical information to help protect astronauts, satellites, and communications signals, and helps enable space exploration.
“These four mission concept studies were selected because they address compelling science questions and could greatly impact the field of heliophysics,” said Nicky Fox, the associate administrator for science at NASA Headquarters in Washington. “These mission proposals are exciting because they build upon and complement the science of our current mission fleet, have the potential for broad impact and could provide new and deeper insight into the solar atmosphere and space weather.”
CINEMA
The Cross-scale Investigation of Earth’s Magnetotail and Aurora (CINEMA) mission would work to understand the structure and evolution of Earth’s plasma sheet – a long sheet of denser space plasma in the magnetic fields flowing behind Earth, known as the magnetotail — using a constellation of nine CubeSats flown in sun-synchronous, low Earth orbit. The primary purpose of this mission is to study the role of plasma sheet structure, as well as how Earth’s magnetic fields transfer heat and change over time at multiple scales. CINEMA will complement current heliophysics missions, such as the THEMIS (Time History of Events and Macroscale Interactions during Substorms), MMS (Magnetospheric Multiscale) mission, and the planned Geospace Dynamics Constellation mission. The principal investigator for the CINEMA mission concept study is Robyn Millan from Dartmouth College, in Hanover, New Hampshire.
CMEx
The Chromospheric Magnetism Explorer (CMEx) mission would attempt to understand the magnetic nature of solar eruptions and identify the magnetic sources of the solar wind. CMEx proposes to obtain the first continuous observations of the solar magnetic field in the chromosphere – the layer of solar atmosphere directly above the photosphere or visible surface of the Sun. These observations would improve our understanding of how the magnetic field on the Sun’s surface connects to the interplanetary magnetic field. The principal investigator for this mission concept study is Holly Gilbert from the National Center for Atmospheric Research in Boulder, Colorado.
EUV CME and Coronal Connectivity Observatory
The Extreme ultraviolet Coronal Mass Ejection and Coronal Connectivity Observatory (ECCCO) consists of a single spacecraft with two instruments, a wide-field extreme ultra-violet imager and a unique imaging EUV spectrograph. ECCCO’s observations would contribute to understanding the middle corona, the dynamics of eruptive events leaving the Sun, and the conditions that produce the outward streaming solar wind. The mission would address fundamental questions about where the mass and energy flow linking the Sun to the outer corona and heliosphere originate ECCCO’s concept study principal investigator is Katharine Reeves from the Smithsonian Astrophysical Observatory, in Cambridge, Massachusetts.
MAAX
The primary objective of the Magnetospheric Auroral Asymmetry Explorer (MAAX) mission would be to improve our understanding of how electrodynamic coupling between Earth’s magnetosphere and ionosphere regulates auroral energy flow. The mission would use two identical spacecraft equipped with dual-wavelength ultraviolet imagers to provide global imaging of northern and southern aurora. The principal investigator for the MAAX concept study is Michael Liemohn from the University of Michigan in Ann Arbor.
“These mission concept study selections provide so much promise to ongoing heliophysics research,” said Peg Luce, acting Heliophysics division director at NASA Headquarters. “The potential to gain new insights and answer longstanding questions in the field while building on the research and technology of our current and legacy missions is incredible..”
Funding and management oversight for these mission concept studies is provided by the Heliophysics Explorers Program, managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
For more information on NASA heliophysics missions, visit:
https://science.nasa.gov/heliophysics
-end-
Denise Hill
Headquarters, Washington
202-308-2071
denise.hill@nasa.gov
Share
Details
Last Updated Sep 29, 2023 Related Terms
Heliophysics Science & Research View the full article
-
By NASA
The SpaceX Falcon 9 rocket with the Dragon capsule atop is raised to the vertical position on June 2, 2021, at Launch Complex 39A at NASA’s Kennedy Space Center in Florida, in preparation for the company’s 22nd Commercial Resupply Services mission for NASA to the International Space Station. In view is the access arm. Dragon will deliver more than 7,300 pounds of cargo to the space station. Liftoff is scheduled for 1:29 p.m. EDT on Thursday, June 3.SpaceX Media accreditation is open for SpaceX’s 29th commercial resupply mission for NASA to the International Space Station.
Liftoff of the SpaceX Dragon cargo spacecraft on the company’s Falcon 9 rocket is targeted no earlier than Wednesday, Nov. 1, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
Media prelaunch and launch activities will take place at NASA Kennedy. Attendance for this launch is open to U.S. citizens. The application deadline for U.S. media is 11:59 p.m. EDT Wednesday, Oct. 18.
All accreditation requests should be submitted online at:
https://media.ksc.nasa.gov
Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available here. For questions about accreditation, or to request special logistical needs, please email ksc-media-accreditat@mail.nasa.gov. For other questions, please contact Kennedy’s newsroom at: 321-867-2468.
Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo at: antonia.jaramillobotero@nasa.gov or 321-501-8425.
SpaceX’s Dragon will deliver new science investigations, food, supplies, and equipment to the international crew. The research includes work to understand interactions between weather on Earth and space, and laser communications. NASA’s Atmospheric Waves Experiment (AWE) will study atmospheric gravity waves –powerful waves formed by weather disturbances on Earth such as strong thunderstorms or brewing hurricanes – to understand the flow of energy through Earth’s upper atmosphere and space. Another experiment – Integrated Laser Communications Relay Demonstration Low-Earth-Orbit User Modem and Amplifier Terminal – (ILLUMA-T) aims to test high data rate laser communications from the space station to Earth. This will complete NASA’s first two-way, end-to-end laser relay system by sending high-resolution data to the agency’s Laser Communications Relay Demonstration, which launched in December 2021.
Other investigations that will launch with the resupply mission include ESA’s (European Space Agency) Aquamembrane-3, which will test water filtration using proteins found in nature for water recycling and recovery, and Plant Habitat-06, which will evaluate the effects of spaceflight on plant defense responses using multiple genotypes of tomato.
Commercial resupply by U.S. companies significantly increases NASA’s ability to conduct more investigations aboard the orbiting laboratory. These investigations lead to new technologies, medical treatments, and products that improve life on Earth. Other U.S. government agencies, private industry, and academic and research institutions can also conduct microgravity research through the agency’s partnership with the International Space Station National Laboratory.
Humans have occupied the space station continuously since November 2000. In that time, 273 people and a variety of international and commercial spacecraft have visited the orbital outpost. It remains the springboard to NASA’s next great leap in exploration, including future missions to the Moon under Artemis, and ultimately, human exploration of Mars.
For more information about commercial resupply missions, visit:
https://www.nasa.gov/commercialresupply
-end-
Lora Bleacher / Julian Coltre
Headquarters, Washington
202-358-1100
lora.v.bleacher@nasa.gov / julian.n.coltre@nasa.gov
Stephanie Plucinsky / Steven Siceloff
Kennedy Space Center, Fla.
321-876-2468
stephanie.n.plucinsky@nasa.gov / steven.p.siceloff@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Share
Details
Last Updated Sep 29, 2023 Related Terms
Commercial Resupply Commercial Space Humans in Space International Space Station (ISS) View the full article
-
By NASA
NASA logo Credit: NASA NASA has selected SpaceX of Hawthorne, California, and its Falcon 9 rocket to provide the launch service for the agency’s TRACERS (Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites) mission, a pair of small satellites that will study space weather and how the Sun’s energy affects Earth’s magnetic environment, or magnetosphere
TRACERS will be an important addition to NASA’s heliophysics fleet and aims to answer long-standing questions critical to understanding the Sun-Earth system. The spinning satellites will study how solar wind, the continuous stream of ionized particles escaping the Sun and pouring out to space, interacts with the region around Earth dominated by our planet’s magnetic field. This interaction, or magnetic reconnection, is an intense transfer of energy that can happen when two magnetic fields meet, which could potentially impact operations with crew and sensitive satellites. TRACERS is led by the University of Iowa with partners at the Southwest Research Institute in San Antonio, and Millennium Space Systems in El Segundo, California.
NASA’s Launch Services Program, based out of the agency’s Kennedy Space Center in Florida, in partnership with NASA’s Heliophysics Small Explorers program, announces the launch service as part of the agency’s VADR (Venture-Class Acquisition of Dedicated and Rideshare) launch services contract.
Learn more about NASA’s TRACERS mission online:
https://blogs.nasa.gov/tracers/
-end-
Joshua Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov
Leejay Lockhart / Laura Aguiar
Kennedy Space Center, Florida
321-747-8310 / 321-593-6245
leejay.lockhart@nasa.gov / laura.aguiar@nasa.gov
Share
Details
Last Updated Sep 29, 2023 Editor Jennifer M. Dooren Location NASA Headquarters Related Terms
Earth Small Satellite Missions View the full article
-
By NASA
5 min read
To Study Atmosphere, NASA Rockets Will Fly into Oct. Eclipse’s Shadow
A NASA sounding rocket mission will launch three rockets during the 2023 annular eclipse in October to study how the sudden drop in sunlight affects our upper atmosphere.
On Oct. 14, 2023, viewers of an annular solar eclipse in the Americas will experience the Sun dimming to 10% its normal brightness, leaving only a bright “ring of fire” of sunlight as the Moon eclipses the Sun. Those in the vicinity of the White Sands Missile Range in New Mexico, however, might also notice sudden bright streaks across the sky: trails of scientific rockets, hurtling toward the eclipse’s shadow.
A NASA sounding rocket mission will launch three rockets to study how the sudden drop in sunlight affects our upper atmosphere. The mission, known as Atmospheric Perturbations around the Eclipse Path or APEP, is led by Aroh Barjatya, a professor of engineering physics at Embry-Riddle Aeronautical University in Daytona Beach, Florida, where he directs the Space and Atmospheric Instrumentation Lab.
Some 50 miles up and beyond, the air itself becomes electric. Scientists call this atmospheric layer the ionosphere because it is where the UV component of sunlight can pry electrons away from atoms to form a sea of high-flying ions and electrons. The Sun’s constant energy keeps these mutually attracted particles separated throughout the day. But as the Sun dips below the horizon, many recombine into neutral atoms for the night, only to part ways again at sunrise.
During a solar eclipse, the sunlight vanishes and reappears over a small part of the landscape almost at once. In a flash, ionospheric temperature and density drop, then rise again, sending waves rippling through the ionosphere.
“If you think of the ionosphere as a pond with some gentle ripples on it, the eclipse is like a motorboat that suddenly rips through the water,” Barjatya said. “It creates a wake immediately underneath and behind it, and then the water level momentarily goes up as it rushes back in.”
The animation shows the changes in the number of electrons (total electron content or TEC) in the ionosphere over the US during the 2017 eclipse. Overlaid on the measurements are the contours that represent location of the outer shadow of the eclipse as it moves across the sky. Credit: Mrak, S., Semeter, J., Drob, D., & Huba, J. D. (2018). Direct EUV/X-Ray Modulation of the Ionosphere During the August 2017 Total Solar Eclipse. Geophysical Research Letters, 45(9), 3820-3828. https://doi.org/10.1029/2017GL076771 During the 2017 total solar eclipse visible across North America, instruments many hundreds of miles outside the eclipse’s path detected atmospheric changes. So did critical infrastructure like GPS and communications satellites that we rely on every day.
“All satellite communications go through the ionosphere before they reach Earth,” Barjatya said. “As we become more dependent on space-based assets, we need to understand and model all perturbations in the ionosphere.”
Aroh Barjatya, of Embry-Riddle Aeronautic University in Daytona Beach, Florida, leads the APEP mission. Here, Barjatya inspects the subpayloads, which will eject from the rocket mid-flight. The subpayloads carry the plasma density, neutral density, and magnetic field sensors. Credit: NASA’s Wallops Flight Facility/Berit Bland Mechanical technician John Peterson of NASA’s Wallops Flight Facility and Barjatya check the six booms carrying the sensitive science sensors after a successful spin deployment testing. Credit: NASA’s Wallops Flight Facility/Berit Bland Mechanical technician John Peterson of NASA’s Wallops Flight Facility and Barjatya check the six booms carrying the sensitive science sensors after a successful spin deployment testing. Credit: NASA’s Wallops Flight Facility/Berit Bland To this end, Barjatya designed the APEP mission, choosing the acronym because it is also the name of the serpent deity from ancient Egyptian mythology, nemesis of the Sun deity Ra. It was said that Apep pursued Ra and every so often nearly consumed him, resulting in an eclipse.
The APEP team plans to launch three rockets in succession – one about 35 minutes before local peak eclipse, one during peak eclipse, and one 35 minutes after. They will fly just outside the path of annularity, where the Moon passes directly in front of the Sun. Each rocket will deploy four small scientific instruments that will measure changes in electric and magnetic fields, density, and temperature. If they are successful, these will be the first simultaneous measurements taken from multiple locations in the ionosphere during a solar eclipse.
Barjatya chose sounding rockets to answer the team’s science questions because they can pinpoint and measure specific regions of space with high fidelity. They can also measure changes that happen at different altitudes as the suborbital rocket ascends and falls back to Earth. The APEP rockets will take measurements between 45 and 200 miles (70 to 325 kilometers) above the ground along their trajectory.
“Rockets are the best way to look at the vertical dimension at the smallest possible spatial scales,” said Barjatya. “They can wait to launch at just the right moment and explore the lower altitudes where satellites can’t fly.”
While the in-situ rocket instruments are all being built by Embry-Riddle and Dartmouth College in New Hampshire, a host of ground-based observations will also support the mission. Co-investigators from the Air Force Research Laboratory at Kirtland Air Force Base in Albuquerque, New Mexico, will collect ionospheric density and neutral wind measurements. Co-investigators from the Massachusetts Institute of Technology’s Haystack Observatory in Westford, Massachusetts, will run their radar to measure ionospheric perturbations farther away from the eclipse path. Finally, a team of students from Embry-Riddle will deploy high-altitude balloons (reaching 100,000 feet) every 20 minutes to measure weather changes as the eclipse passes by. All of these measurements will aid ionosphere modeling efforts led by scientists at the University of Colorado Boulder and Embry-Riddle.
This won’t be the only APEP launch. The APEP rockets launched in New Mexico will be recovered and then relaunched from NASA’s Wallops Flight Facility in Virginia, on April 8, 2024, when a total solar eclipse will cross the U.S. from Texas to Maine. The April launches are farther from the eclipse path than for the October annular eclipse, but will present an opportunity to measure just how widespread the effects of an eclipse are.
This map details the path the Moon’s shadow will take as it crosses the contiguous U.S. during the annular solar eclipse on Oct. 14, 2023, and total solar eclipse on April 8, 2024. Credit: NASA/Scientific Visualization Studio/Michala Garrison; eclipse calculations by Ernie Wright After these two eclipses, the next total solar eclipse over the contiguous U.S. is not until 2044, and the next annular eclipse is not until 2046. “We have to make hay while the Sun shines … or, I suppose for eclipse science, while it doesn’t,” Barjatya joked. “In all seriousness though, this data set will reveal the widespread effects that eclipses have on the ionosphere at the smallest spatial scales.”
Read More
APEP mission fact sheet
Learn more about the upcoming eclipses
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.