Jump to content

Three hours to save Integral


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Three-Year Study of Young Stars with NASA’s Hubble Enters New Chapter
      In the largest and one of the most ambitious Hubble Space Telescope programs ever executed, a team of scientists and engineers collected information on almost 500 stars over a three-year period. This effort offers new insights into the stars’ formation, evolution, and impact on their surroundings. 
      This comprehensive survey, called ULLYSES (Ultraviolet Legacy Library of Young Stars as Essential Standards), was completed in December 2023, and provides a rich spectroscopic dataset obtained in ultraviolet light that astronomers will be mining for decades to come. Because ultraviolet light can only be observed from space, Hubble is the only active telescope that can accomplish this research. 
      The ULLYSES program studied two types of young stars: super-hot, massive, blue stars and cooler, redder, less massive stars than our Sun. The top panel is a Hubble Space Telescope image of a star-forming region containing massive, young, blue stars in 30 Doradus, the Tarantula Nebula. Located within the Large Magellanic Cloud, this is one of the regions observed by ULLYSES. The bottom panel shows an artist’s concept of a cooler, redder, young star that less massive than our Sun. This type of star is still gathering material from its surrounding, planet-forming disk. NASA, ESA, STScI, Francesco Paresce (INAF-IASF Bologna), Robert O’Connell (UVA), SOC-WFC3, ESO
      Download this image

      “I believe the ULLYSES project will be transformative, impacting overall astrophysics – from exoplanets, to the effects of massive stars on galaxy evolution, to understanding the earliest stages of the evolving universe,” said Julia Roman-Duval, Implementation Team Lead for ULLYSES at the Space Telescope Science Institute (STScI) in Baltimore, Maryland. “Aside from the specific goals of the program, the stellar data can also be used in fields of astrophysics in ways we can’t yet imagine.”
      The ULLYSES team studied 220 stars, then combined those observations with information from the Hubble archive on 275 additional stars. The program also included data from some of the world’s largest, most powerful ground-based telescopes and X-ray space telescopes. The ULLYSES dataset is made up of stellar spectra, which carry information about each star’s temperature, chemical composition, and rotation. 
      One type of stars studied under ULLYSES is super-hot, massive, blue stars. They are a million times brighter than the Sun and glow fiercely in ultraviolet light that can easily be detected by Hubble. Their spectra include key diagnostics of the speed of their powerful winds. The winds drive galaxy evolution and seed galaxies with the elements needed for life. Those elements are cooked up inside the stars’ nuclear fusion ovens and then injected into space as a star dies. ULLYSES targeted blue stars in nearby galaxies that are deficient in elements heavier than helium and hydrogen. This type of galaxy was common in the very early universe. “ULLYSES observations are a stepping stone to understanding those first stars and their winds in the universe, and how they impact the evolution of their young host galaxy,” said Roman-Duval.  
      The other star category in the ULLYSES program is young stars less massive than our Sun. Though cooler and redder than our Sun, in their formative years they unleash a torrent of high-energy radiation, including blasts of ultraviolet light and X-rays. Because they are still growing, they are gathering material from their surrounding planet-forming disks of dust and gas. The Hubble spectra include key diagnostics of the process by which they acquire their mass, including how much energy this process releases into the surrounding planet-forming disk and nearby environment. The blistering ultraviolet light from young stars affects the evolution of these disks as they form planets, as well as the chances of habitability for newborn planets. The target stars are located in nearby star-forming regions in our Milky Way galaxy.
      The ULLYSES concept was designed by a committee of experts with the goal of using Hubble to provide a legacy set of stellar observations. “ULLYSES was originally conceived as an observing program utilizing Hubble’s sensitive spectrographs. However, the program was tremendously enhanced by community-led coordinated and ancillary observations with other ground- and space-based observatories,” said Roman-Duval. “Such broad coverage allows astronomers to investigate the lives of stars in unprecedented detail and paint a more comprehensive picture of the properties of these stars and how they impact their environment.”
      To that end, STScI hosted a ULLYSES workshop March 11–14 to celebrate the beginning of a new era of research on young stars. The goal was to allow members of the astronomical community to collaborate on the data, so that they could gain momentum in the ongoing analyses, or kickstart new ideas for analysis. The workshop was one important step in exploiting this legacy spectral library to its fullest potential, fulfilling the promise of ULLYSES.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ann Jenkins / Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contact:
      Julia Roman-Duval
      Space Telescope Science Institute, Baltimore, MD
      Share








      Details
      Last Updated Mar 28, 2024 Editor Andrea Gianopoulos Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Stars The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Stars Stories



      Galaxies Stories



      Universe


      View the full article
    • By European Space Agency
      ESA’s gamma-ray space telescope Integral has played a decisive role in capturing jets of matter being expelled into space at one-third the speed of light. The material and energy were liberated when huge explosions occurred on the surface of a neutron star. This world-first observation proved to be “a perfect experiment” for exploring astrophysical jets of all descriptions.
      View the full article
    • By NASA
      NASA’s history-making Ingenuity Mars Helicopter has ended its mission at the Red Planet after surpassing expectations and making dozens more flights than planned. While the helicopter remains upright and in communication with ground controllers, imagery of its Jan. 18 flight sent to Earth this week indicates one or more of its rotor blades sustained damage during landing, and it is no longer capable of flight.
      Originally designed as a technology demonstration to perform up to five experimental test flights over 30 days, the first aircraft on another world operated from the Martian surface for almost three years, performed 72 flights, and flew more than 14 times farther than planned while logging more than two hours of total flight time.
      “The historic journey of Ingenuity, the first aircraft on another planet, has come to end,” said NASA Administrator Bill Nelson. “That remarkable helicopter flew higher and farther than we ever imagined and helped NASA do what we do best – make the impossible, possible. Through missions like Ingenuity, NASA is paving the way for future flight in our solar system and smarter, safer human exploration to Mars and beyond.”
      NASA to Discuss Ingenuity Mission in Media Call Today
      In addition to video comments shared from Nelson about the mission’s conclusion, NASA will host a media teleconference at 5 p.m. EST today, Thursday, Jan. 25, to provide an update on Ingenuity Mars Helicopter.
      Audio of the call will stream live on the agency’s website.
      Participants in the call are expected to include:
      Lori Glaze, director, Planetary Science Division, NASA’s Science Mission Directorate at the agency’s headquarters in Washington Laurie Leshin, director, NASA’s Jet Propulsion Laboratory in Southern California Teddy Tzanetos, Ingenuity project manager, NASA JPL Media who wish to participate by phone can request dial-in information by emailing hq-media@mail.nasa.gov.
      Ingenuity landed on Mars Feb. 18, 2021, attached to the belly of NASA’s Perseverance rover and first lifted off the Martian surface on April 19, proving that powered, controlled flight on Mars was possible. After notching another four flights, it embarked on a new mission as an operations demonstration, serving as an aerial scout for Perseverance scientists and rover drivers. In 2023, the helicopter executed two successful flight tests that further expanded the team’s knowledge of its aerodynamic limits.
      “At NASA JPL, innovation is at the heart of what we do,” said Leshin. “Ingenuity is an exemplar of the way we push the boundaries of what’s possible every day. I’m incredibly proud of our team behind this historic technological achievement and eager to see what they’ll invent next.” 
      Ingenuity’s team planned for the helicopter to make a short vertical flight on Jan. 18 to determine its location after executing an emergency landing on its previous flight. Data shows that, as planned, the helicopter achieved a maximum altitude of 40 feet (12 meters) and hovered for 4.5 seconds before starting its descent at a velocity of 3.3 feet per second (1 meter per second).
      However, about 3 feet (1 meter) above the surface, Ingenuity lost contact with the rover, which serves as a communications relay for the rotorcraft. The following day, communications were reestablished and more information about the flight was relayed to ground controllers at NASA JPL. Imagery revealing damage to the rotor blade arrived several days later. The cause of the communications dropout and the helicopter’s orientation at time of touchdown are still being investigated.
      This enhanced color view of NASA’s Ingenuity Mars Helicopter was generated using data collected by the Mastcam-Z instrument aboard the agency’s Perseverance Mars rover on Aug. 2, 2023, the 871st Martian day, or sol, of the mission. The image was taken a day before the rotorcraft’s 54th flight. After its 72nd flight on Jan. 18, 2024, NASA’s Ingenuity Mars Helicopter captured this color image showing the shadow of one of its rotor blades, which was damaged during touchdown. NASA/JPL-Caltech Triumphs, Challenges
      Over an extended mission that lasted for almost 1,000 Martian days, more than 33 times longer than originally planned, Ingenuity was upgraded with the ability to autonomously choose landing sites in treacherous terrain, dealt with a dead sensor, cleaned itself after dust storms, operated from 48 different airfields, performed three emergency landings, and survived a frigid Martian winter.
      Designed to operate in spring, Ingenuity was unable to power its heaters throughout the night during the coldest parts of winter, resulting in the flight computer periodically freezing and resetting. These power “brownouts” required the team to redesign Ingenuity’s winter operations in order to keep flying.
      With flight operations now concluded, the Ingenuity team will perform final tests on helicopter systems and download the remaining imagery and data in Ingenuity’s onboard memory. The Perseverance rover is currently too far away to attempt to image the helicopter at its final airfield.
      “It’s humbling Ingenuity not only carries onboard a swatch from the original Wright Flyer, but also this helicopter followed in its footsteps and proved flight is possible on another world,” said Ingenuity’s project manager, Teddy Tzanetos of NASA JPL. “The Mars helicopter would have never flown once, much less 72 times, if it were not for the passion and dedication of the Ingenuity and Perseverance teams. History’s first Mars helicopter will leave behind an indelible mark on the future of space exploration and will inspire fleets of aircraft on Mars – and other worlds – for decades to come.”
      More About Ingenuity
      The Ingenuity Mars Helicopter was built by NASA JPL, which also manages the project for NASA Headquarters. It is supported by NASA’s Science Mission Directorate. NASA’s Ames Research Center in California’s Silicon Valley and NASA’s Langley Research Center in Hampton, Virginia, provided significant flight performance analysis and technical assistance during Ingenuity’s development. AeroVironment Inc., Qualcomm, and SolAero also provided design assistance and major vehicle components. Lockheed Space designed and manufactured the Mars Helicopter Delivery System. At NASA Headquarters, Dave Lavery is the program executive for the Ingenuity Mars helicopter.
      For more information about Ingenuity:
      https://mars.nasa.gov/technology/helicopter
      -end-
      Alise Fisher / Alana Johnson
      Headquarters, Washington
      202-358-2546 / 202-358-1501
      alise.m.fisher@nasa.gov / alana.r.johnson@nasa.gov
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Share
      Details
      Last Updated Jan 25, 2024 LocationNASA Headquarters Related Terms
      Ingenuity (Helicopter) Missions View the full article
    • By NASA
      Expedition 69 Flight Engineers play chess with NASA mission controllersCredit NASA Jan. 16, 2024
      RELEASE: 24-001
      Four astronauts, including the current record holder for the longest single U.S. stay in space aboard the International Space Station, will make their first public appearance in Houston since returning to Earth. The crew also will be available for interviews before the event at 5 p.m. CST Thursday, Jan. 18, at Space Center Houston.
      Expedition 69 NASA astronauts Stephen Bowen, Woody Hoburg, and Frank Rubio, along with United Arab Emirates (UAE) astronaut Sultan Alneyadi, will be at NASA Johnson Space Center in Houston official visitor center to share accomplishments from their mission during a free, public event at 5:30 p.m. At 7 p.m., the crew, along NASA leadership, will help recognize key contributors to the mission’s success in an awards ceremony.
      Reporters may request an in-person interview no later than 12 p.m. Jan. 18 by emailing Dana Davis at dana.l.davis@nasa.gov.  
      Expedition 69
      NASA’s SpaceX Crew-6 mission launched in March 2023 with Bowen, Hoburg, and Alneyadi, as well as Roscosmos cosmonaut Andrey Fedyaev, on the sixth commercial crew rotation mission to the space station. The crew spent 186 days in orbit, traveled 78,875,292 miles, and completed 2,976 Earth orbits, splashing down off the coast of Jacksonville, Florida, on Sept. 4, 2023. This was Bowen’s fourth spaceflight and the first spaceflight for Hoburg, Alneyadi, and Fedyaev. The crew helped improve power systems for the space station through a series of spacewalks. In June 2023, Bowen completed his 10th career spacewalk, tying the U.S. record for number of spacewalks. Alneyadi also completed the first long-duration mission for a UAE astronaut.

      The Dragon crew was welcomed aboard the station by the international crew that flew on the Soyuz spacecraft and served on Expeditions 68 and 69. NASA astronaut Frank Rubio and Roscosmos cosmonauts Sergey Prokopyev and Dmitri Petelin launched six months earlier, on the Soyuz MS-22 spacecraft in September 2022. The Soyuz crew spent a total of 371 days aboard the space station, traveled 157,412,306 statute miles, and completed 5,963 Earth orbits, landing in Kazakhstan aboard the Soyuz MS-23 spacecraft on Sept. 27, 2023. This was the second spaceflight for Prokopyev and Petelin. This was Rubio’s first spaceflight mission and it broke the U.S. record for a single spaceflight by an American.
      While aboard the station, the Expedition 69 crew contributed to hundreds of experiments and technology demonstrations, including conducting a student robotic challenge, studying plant genetic adaptations to space, and monitoring human health in microgravity to prepare for exploration beyond low Earth orbit and to benefit life on Earth. The crew released Saskatchewan’s first satellite, which tests a new radiation detection and protection system derived from Melanin that’s found in many organisms including humans.
      Stay current on space station activities by following @space_station and @ISS_Research on Twitter, as well as the station Facebook and Instagram accounts and the space station blog.
      -end-
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      chelsey.n.ballarte@nasa.gov


      Dana Davis
      Johnson Space Center, Houston
      281-244-0933
      dana.l.davis@nasa.gov

      View the full article
  • Check out these Videos

×
×
  • Create New...