Jump to content

Solar storm stirs stunning aurora


Recommended Posts

Solar_storm_stirs_stunning_aurora_card_f Video: 00:00:29

After the Sun ejected a violent mass of fast-moving plasma into space on 9 October, ESA waited for the storm to strike. A few days later, the coronal mass ejection (CME) arrived at Earth, crashing into our planet’s magnetosphere, and lighting up the sky.

CMEs explode from the Sun, rush through the Solar System and while doing so speed up the solar wind – a stream of charged particles continuously released from the Sun’s upper atmosphere.

While most of the solar wind is blocked by Earth’s protective magnetosphere, some charged particles become trapped in Earth’s magnetic field and flow down to the geomagnetic poles, colliding with the upper atmosphere to create the beautiful Aurora.

A marbled sky

This stunning video was created from images taken every minute during this recent period of intense auroral activity in the early hours of 12 October, by an all-sky camera in Kiruna, Sweden – part of ESA’s Space Weather Service Network. The goal of such cameras is to view as much as the sky as possible, so they are fitted with a 'fish-eye' lens to see horizon to horizon when pointed straight up.

The video, running in half-speed to accentuate the beautiful auroral motion, starts with a mass of green, swirling structures, created when energetic particles in the solar wind collide with oxygen in Earth’s atmosphere, which then, ‘excited’ gives off light in the green range of the electromagnetic spectrum. This typically occurs at around 120 – 180 kilometres from Earth’s surface.

As we humans have evolved to be very adept at seeing different shades of green, it’s the most predominant colour we see. Harder to see is the purple aurora seen later in the video, this time created as energetic particles strike ‘ionic’ nitrogen in Earth’s atmosphere.

Not just beautiful, such observations are vital to understanding the complex, and sometimes hazardous interactions between the Sun and Earth.

“What I love about this video is the chance to see this beautiful, purple aurora, more clearly visible during intense geomagnetic storms” explains Hannah Laurens, RHEA Space Weather Applications Scientist based at ESOC.

“The movement of this swirly structure in space and time is often referred to as auroral dynamics, and this is very important when studying the relationship between the ionosphere and magnetosphere, linked by lines of magnetic field. The aurora is a manifestation of complex drivers operating in the distant magnetosphere which makes it a useful, and beautiful, tool with which to monitor space weather conditions”.

A beautiful side of something more troubling

The all-sky auroral camera is operated by the Kiruna Atmospheric and Geophysical Observatory (KAGO) within the Swedish Institute of Space Physics (IRF), and data from here is provided as part of the ESA’s network of space weather services within the Agency’s Space Safety Programme.

This is the first auroral display captured by the instrument following its integration into the ESA Space Weather Portal, which provides timely information to anyone affected by the Sun’s outbursts – from airline pilots, to operators of spacecraft and power grids, or even hopeful aurora hunters.

While humans on Earth are protected by Earth’s magnetic field, Space Weather can have an extreme and disruptive impact on satellites in orbit and infrastructure on Earth, and ultimately our society. For this reason, ESA’s Space Weather Service Network continues to monitor our star and the conditions around Earth, to provide information to keep our systems safe.

In 2027, ESA will launch a first-of-its kind mission to monitor the Sun from a unique vantage point. Studying our star from the side, it will provide a stream of data that will warn of potentially hazardous regions before they roll into view from Earth.

Find out more about Space Weather, and sign up for free updates from ESA’s Space Weather Service Network.

Credit: All-sky camera, Kiruna Atmospheric and Geophysical Observatory (KAGO) within the Swedish Institute of Space Physics (IRF). Data provided as part of ESA’s Space Weather Service Network.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      X-ray: (Chandra) NASA/CXC/U. Manitoba/C. Treturik, (XMM-Newton) ESA/C. Treturik; Optical: (Pan-STARRS) NOIRLab/MDM/Dartmouth/R. Fesen; Infrared: (WISE) NASA/JPL/Caltech/; Image Processing: Univ. of Manitoba/Gilles Ferrand and Jayanne English In the year 1181 a rare supernova explosion appeared in the night sky, staying visible for 185 consecutive days. Historical records show that the supernova looked like a temporary ‘star’ in the constellation Cassiopeia shining as bright as Saturn.
      Ever since, scientists have tried to find the supernova’s remnant. At first it was thought that this could be the nebula around the pulsar — the dense core of a collapse star — named 3C 58. However closer investigations revealed that the pulsar is older than supernova 1181.
      In the last decade, another contender was discovered; Pa 30 is a nearly circular nebula with a central star in the constellation Cassiopeia. It is pictured here combining images from several telescopes. This composite image uses data across the electromagnetic spectrum and shows a spectacular new view of the supernova remnant. This allows us to marvel at the same object that appeared in our ancestors’ night sky more than 800 years ago.
      X-ray observations by ESA’s XMM-Newton (blue) show the full extent of the nebula and NASA’s Chandra X-ray Observatory (cyan) pinpoints its central source. The nebula is barely visible in optical light but shines bright in infrared light, collected by NASA’s Wide-field Infrared Space Explorer (red and pink). Interestingly, the radial structure in the image consists of heated sulfur that glows in visible light, observed with the ground-based Hiltner 2.4 m telescope at the MDM Observatory (green) in Arizona, USA, as do the stars in the background by Pan-STARRS (white) in Hawaii, USA.
      Studies of the composition of the different parts of the remnant have led scientists to believe that it was formed in a thermonuclear explosion, and more precisely a special kind of supernova called a sub-luminous Type Iax event. During this event two white dwarf stars merged, and typically no remnant is expected for this kind of explosion. But incomplete explosions can leave a kind of ‘zombie’ star, such as the massive white dwarf star in this system. This very hot star, one of the hottest stars in the Milky Way (about 200 000 degrees Celsius), has a fast stellar wind with speeds up to 16,000 km/h. The combination of the star and the nebula makes it a unique opportunity for studying such rare explosions.
      The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      For more Chandra images, multimedia and related materials, visit:
      https://www.nasa.gov/mission/chandra-x-ray-observatory/
      Visual Description:
      This is a composite image of SNR 1181, the remains of an explosion hundreds of years ago caused by the merger of two stars.
      A bright, multi-colored, spherical nebula sits in the middle of the canvas surrounded by a field of stars that appear as white dots. In the center of the nebula is a small point of aqua-colored light. This is the hot white dwarf star that was left behind after the likely merger of two smaller white dwarfs caused an explosion. From this single point of aqua light, several spectacular rays expand outward, resembling a single firework bursting in celebration in the night sky.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      Jonathan Deal
      Marshall Space Flight Center
      Huntsville, Ala.
      256-544-0034
      View the full article
    • By European Space Agency
      In the run up to April’s total solar eclipse, ESA-led Solar Orbiter and NASA-led Parker Solar Probe are both at their closest approach to the Sun. They are taking the opportunity to join hands in studying the driving rain of plasma that streams from the Sun, fills the Solar System, and causes dazzlement and destruction at Earth.
      View the full article
    • By NASA
      4 min read
      ESA, NASA Solar Observatory Discovers Its 5,000th Comet
      On March 25, 2024, a citizen scientist in the Czech Republic spotted a comet in an image from the Solar and Heliospheric Observatory (SOHO) spacecraft, which has now been confirmed to be the 5,000th comet discovered using SOHO data. SOHO has achieved this milestone over 28 years in space, even though it was never designed to be a comet hunter.
      The 5,000th comet discovered with the Solar and Heliospheric Observatory (SOHO) spacecraft is noted by a small white box in the upper left portion of this image. A zoomed-in inset shows the comet as a faint dot between the white vertical lines. The image was taken on March 25, 2024, by SOHO’s Large Angle and Spectrometric Coronagraph (LASCO), which uses a disk to block the bright Sun and reveal faint features around it. NASA/ESA/SOHO The comet is a small body made of ice and rock that takes only a few years to orbit the Sun. It belongs to the “Marsden group” of comets. This group is thought to be related to comet 96P/Machholz (which SOHO observes when Machholz passes near the Sun every 5.3 years) and is named for the late scientist Brian Marsden who first recognized the group using SOHO observations. Only about 75 of the 5,000 comets discovered with SOHO belong to the Marsden group.
      A joint mission of ESA (European Space Agency) and NASA, SOHO launched in December 1995 to study the Sun and the dynamics in its outer atmosphere, called the corona. A science instrument on SOHO, called the Large Angle and Spectrometric Coronagraph (LASCO), uses an artificial disk to block the blinding light of the Sun so scientists can study the corona and environment immediately around the Sun.
      This also allows SOHO to do something many other spacecraft cannot – see comets flying close to the Sun, known as “sungrazing” comets or “sungrazers.” Many of these comets only brighten when they’re too close to the Sun for other observatories to see and would otherwise go undetected, lost in the bright glare of our star. While scientists expected SOHO to serendipitously find some comets during its mission, the spacecraft’s ability to spot them has made it the most prolific comet-finder in history – discovering more than half of the comets known today.
      In fact, soon after SOHO launched, people around the world began spotting so many comets in its images that mission scientists needed a way to keep track of them all. In the early 2000s, they launched the NASA-funded Sungrazer Project that allows anyone to report comets they find in SOHO images.
      This animation shows the Solar and Heliospheric Observatory’s 5,000th comet (circled) moving across the field relative to background stars. The images in this sequence were taken with the spacecraft’s Large Angle and Spectrometric Coronagraph (LASCO) instrument. NASA/ESA/SOHO SOHO’s 5,000th comet was found by Hanjie Tan, a Sungrazer Project participant who is originally from Guangzhou, China, and is currently pursuing a doctoral degree in astronomy in Prague, Czech Republic. Tan has been participating in the Sungrazer Project since he was 13 years old and is one of the project’s youngest comet discoverers.
      “Since 2009, I’ve discovered over 200 comets,” Tan said. “I got into the Sungrazer Project because I love looking for comets. It’s really exciting to be the first to see comets get bright near the Sun after they’ve been traveling through space for thousands of years.”
      Most of the 5,000 comets discovered using SOHO have been found with the help of an international cadre of volunteer comet hunters – many with no formal scientific training – participating in the Sungrazer Project.
      “Prior to the launch of the SOHO mission and the Sungrazer Project, there were only a couple dozen sungrazing comets on record – that’s all we knew existed,” said Karl Battams, a space scientist at the U.S. Naval Research Lab in Washington, D.C., and the principal investigator for the Sungrazer Project. “The fact that we’ve finally reached this milestone – 5,000 comets – is just unbelievable to me.”
      SOHO’s 5,000th comet was discovered with the help of volunteers participating in the NASA-funded Sungrazer Project.
      Credit: NASA’s Goddard Space Flight Center The vast number of comets discovered using SOHO has allowed scientists to learn more about sungrazing comets and groups of comets that orbit the Sun. Comets discovered by the Sungrazer Project have also helped scientists learn more about the Sun, by watching the comets plunge through our star’s atmosphere like small solar probes.
      “The statistics of 5,000 comets, and looking at their orbits and trajectories through space, is a super unique dataset – it’s really valuable science,” Battams said. “It’s a testament to the countless hours the project participants have put into this. We absolutely would never had reached this milestone if it wasn’t for what the project volunteers have done.”
      The Sungrazer Project is one of many opportunities that anyone can get involved with to help make discoveries with NASA during the Heliophysics Big Year, which extends through the end of 2024. Learn more about SOHO, the Sungrazer Project, and other NASA science projects you can participate in:
      NASA SOHO mission website ESA SOHO website The Sungrazer Project Why ESA and NASA’s SOHO Spacecraft Spots So Many Comets 4,000th Comet Discovered by ESA & NASA Solar Observatory NASA Citizen Science by Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Mar 27, 2024 Related Terms
      Citizen Science Comets Heliophysics Skywatching SOHO (Solar and Heliospheric Observatory) The Solar System The Sun Explore More
      5 min read NASA to Launch Sounding Rockets into Moon’s Shadow During Solar Eclipse


      Article


      2 days ago
      5 min read Sketch the Shape of the Sun for Science During the Solar Eclipse


      Article


      1 week ago
      2 min read NASA Volunteers Find Fifteen Rare “Active Asteroids”


      Article


      2 weeks ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By European Space Agency
      Image: In the year 1181 a rare supernova explosion appeared in the night sky, staying visible for 185 consecutive days. Historical records show that the supernova looked like a temporary ‘star’ in the constellation Cassiopeia shining as bright as Saturn.
      Ever since, scientists have tried to find the supernova’s remnant. At first it was thought that this could be the nebula around the pulsar (dead star) 3C 58. However closer investigations revealed that the pulsar is older than supernova 1181.
      In the last decade, another contender was discovered; Pa 30 is a nearly circular nebula with a central star in the constellation Cassiopeia. It is pictured here combining images from several telescopes. This composite image uses data across the electromagnetic spectrum and shows a new spectacular view of the supernova remnant. Allowing us to marvel at the same object that appeared in our ancestors’ night sky more than 800 years ago.
      X-ray observations by ESA’s XMM-Newton (blue) show the full extent of the nebula and NASA’s Chandra X-ray Observatory (cyan) pinpoints its central source. The nebula is barely visible in optical light but shines bright in infrared light, collected by NASA’s Wide-field Infrared Space Explorer (red and pink). Interestingly, the radial structure in the image consists of heated sulphur that glows in visible light, observed with the ground-based Hiltner 2.4 m telescope at the MDM Observatory (green) in Arizona, USA, as do the stars in the background by Pan-STARRS (white) in Hawaii, USA.
      Studies of the composition of the different parts of the remnant have led scientists to believe that it was formed in a thermonuclear explosion, and more precisely a special kind of supernova called a sub-luminous Type Iax event. During this event two white dwarf stars merged, and typically no remnant is expected for this kind of explosion. But incomplete explosions can leave a kind of ‘zombie’ star, such as the massive white dwarf star in this system. This very hot star, one of the hottest stars in the Milky Way (about 200 000 degrees Celsius), has a fast stellar wind with speeds up to 16 000 km/h. The combination of the star and the nebula makes it a unique opportunity for studying such rare explosions.
      [Image description: A composite image of the remnant of supernova 1181. A spherical bright nebula sits in the middle surrounded by a field of white dotted stars. Within the nebula several rays point out like fireworks from a central star.]
      View the full article
    • By NASA
      2024 Total Solar Eclipse News Conference
  • Check out these Videos

×
×
  • Create New...