Jump to content

First Copernicus satellite exceeds design working life


Recommended Posts

Copernicus Sentinel-1A: seven years in operation

This week marks seven years since the very first satellite that ESA built for the European Union’s Copernicus programme started delivering data to monitor the environment. The Sentinel-1A satellite has shed new light on our changing world and has been key to supplying a wealth of radar imagery to aid disaster response. While this remarkable satellite may have been designed for an operational life of seven years, it is still going strong and fully expected to be in service for several years to come.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read Eileen Collins Broke Barriers as America’s First Female Space Shuttle Commander
      Astronauts Eileen M. Collins, mission commander and Jeffrey S. Ashby, pilot, peruse checklists on Columbia's middeck during the STS-93 mission. Credits: NASA At the end of February 1998, Johnson Space Center Deputy Director James D. Wetherbee called Astronaut Eileen Collins to his office in Building 1. He told her she had been assigned to command STS-93 and went with her to speak with Center Director George W.S. Abbey who informed her that she would be going to the White House the following week.
      Selecting a female commander to fly in space was a monumental decision, something the space agency recognized when they alerted the president of the United States. First Lady Hillary Clinton wanted to publicly announce the flight to the American people along with her husband President William J. Clinton and NASA Administrator Daniel S. Goldin.
      President William Jefferson Clinton and First Lady Hillary Rodham Clinton with Eileen Collins in the Oval Office.Sharon Farmer and White House Photograph Office At that event, on March 5, 1998, the First Lady noted what a change it would be to have a female in the commander’s seat. Referencing Neil A. Armstrong’s first words on the Moon, Clinton proclaimed, “Collins will take one big step forward for women and one giant leap for humanity.” Collins, a military test pilot and shuttle astronaut, was about to break one of the last remaining barriers for women at NASA by being assigned a position previously filled by men only. Clinton went on to reflect on her own experience with the space agency when she explained how in 1962, at the age of 14, she had written to NASA and asked about the qualifications to become an astronaut. NASA responded that women were not being considered to fly space missions. “Well, times have certainly changed,” she said wryly.
      Eileen Collins’ assignment as the first female shuttle commander was front page news in the March 13, 1998 issue of Johnson Space Center’s Space News Roundup.NASA The same year Hillary Clinton inquired about the astronaut corps, a special subcommittee of the U.S. House of Representatives Committee on Science and Astronautics held hearings on the issue of sexual discrimination in the selection of astronauts. Astronaut John H. Glenn, who had flown that February in 1962, justified women’s exclusion from the corps. “I think this gets back to the way our social order is organized really. It is just a fact. The men go off and fight the wars and fly the airplanes and come back and help design and build and test them. The fact that women are not in this field is a fact of our social order. It may be undesirable.” Attitudes about women’s place in society, not just at NASA, were stubbornly hard to break. It would be 16 years before the agency selected its first class of astronauts that included women.
      Astronaut Eileen M. Collins looks over a checklist at the commander’s station on the forward flight deck of the space shuttle Columbia on July 23, 1999, the first day of the mission.  The most important event of this day was the deployment of the Chandra X-Ray Observatory.NASA By 1998, views about women’s roles had changed substantially, as demonstrated by the naming of the first female shuttle commander. The agency even commissioned a song for the occasion: “Beyond the Sky,” by singer-songwriter Judy Collins. NASA dedicated the historic mission’s launch to America’s female aviation pioneers from the Ninety-Nines—an international organization of women pilots—to the Women Airforce Service Pilots (WASPs), women who ferried aircraft for the military during World War II. Collins also extended an invitation to the women who had participated in Randy Lovelace’s Woman in Space Program, where women went through the same medical and psychological tests as the Mercury 7 astronauts; the press commonly refers to these women as the Mercury 13. (Commander Collins had thanked both the WASPs and the Mercury 13 for paving the way and inspiring her career in aviation and spaceflight in her White House speech.)
      In a way, it's like my dream come true.
      Betty Skelton Frankman
      Pioneering Woman Aviator
      In a group interview with several of the WASPs in Florida, just before launch, Mary Anna “Marty” Martin Wyall explained why they came. “Eileen Collins was one of those women that has always looked at us as being her mentors, and we just think she’s great. That’s why we want to come see her blast off.” Betty Skelton Frankman expressed just how proud she was of Collins, and how NASA’s first female commander would be fulfilling her dream to fly in space. “In a way,” she said, “it’s like my dream come true.” In the ‘60s it was not possible for a woman to fly in space because none met the requirements as laid out by NASA. But by the end of the twentieth century, women had been in the Astronaut Office for 20 years, and opportunities for women had grown as women were selected as pilot astronauts. NASA named its second and only other female space shuttle commander, Pamela A. Melroy, to STS-120, and Peggy A. Whitson went on to command the International Space Station. Melroy and Whitson shook hands in space, when their missions coincided, for another historic first—two women commanding space missions at the same time.
      Twenty-five years ago, Eileen Collins’ command broke down barriers in human spaceflight. As the First Lady predicted, her selection led to other opportunities for women astronauts. More women continue to command spaceflight missions, including Expedition 65 Commander Shannon Walker and Expedition 68 Commander Samantha Cristoforetti. More importantly, Collins became a role model for young people interested in aviation, engineering, math, science, and technology. Her career demonstrated that there were no limits if you worked hard and pursued your passion.
      Learn More About Eileen Collins Share
      Details
      Last Updated Jul 22, 2024 Related Terms
      Eileen M. Collins Former Astronauts NASA History STS-93 Women at NASA Women's History Month Explore More
      5 min read Sally Ride Remembered as an Inspiration to Others
      Article 1 year ago 6 min read The Class of 1978 and the FLATs
      Article 11 years ago 6 min read Lovelace’s Woman in Space Program
      Article 20 years ago Keep Exploring Discover More Topics From NASA
      NASA History
      Women at NASA
      Space Shuttle
      Former Astronauts
      View the full article
    • By NASA
      5 min read
      NASA: Life Signs Could Survive Near Surfaces of Enceladus and Europa
      Europa, a moon of Jupiter, and Enceladus, a moon of Saturn, have evidence of oceans beneath their ice crusts. A NASA experiment suggests that if these oceans support life, signatures of that life in the form of organic molecules (e.g. amino acids, nucleic acids, etc.) could survive just under the surface ice despite the harsh radiation on these worlds. If robotic landers are sent to these moons to look for life signs, they would not have to dig very deep to find amino acids that have survived being altered or destroyed by radiation.
      “Based on our experiments, the ‘safe’ sampling depth for amino acids on Europa is almost 8 inches (around 20 centimeters) at high latitudes of the trailing hemisphere (hemisphere opposite to the direction of Europa’s motion around Jupiter) in the area where the surface hasn’t been disturbed much by meteorite impacts,” said Alexander Pavlov of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, lead author of a paper on the research published July 18 in Astrobiology. “Subsurface sampling is not required for the detection of amino acids on Enceladus – these molecules will survive radiolysis (breakdown by radiation) at any location on the Enceladus surface less than a tenth of an inch (under a few millimeters) from the surface.”
      The frigid surfaces of these nearly airless moons are likely uninhabitable due to radiation from both high-speed particles trapped in their host planet’s magnetic fields and powerful events in deep space, such as exploding stars. However, both have oceans under their icy surfaces that are heated by tides from the gravitational pull of the host planet and neighboring moons. These subsurface oceans could harbor life if they have other necessities, such as an energy supply as well as elements and compounds used in biological molecules.
      Dramatic plumes, both large and small, spray water ice and vapor from many locations along the famed “tiger stripes” near the south pole of Saturn’s moon Enceladus. NASA/JPL/Space Science Institute The research team used amino acids in radiolysis experiments as possible representatives of biomolecules on icy moons. Amino acids can be created by life or by non-biological chemistry. However, finding certain kinds of amino acids on Europa or Enceladus would be a potential sign of life because they are used by terrestrial life as a component to build proteins. Proteins are essential to life as they are used to make enzymes which speed up or regulate chemical reactions and to make structures. Amino acids and other compounds from subsurface oceans could be brought to the surface by geyser activity or the slow churning motion of the ice crust.
      This view of Jupiter’s icy moon Europa was captured by JunoCam, the public engagement camera aboard NASA’s Juno spacecraft, during the mission’s close flyby on Sept. 29, 2022. The picture is a composite of JunoCam’s second, third, and fourth images taken during the flyby, as seen from the perspective of the fourth image. North is to the left. The images have a resolution of just over 0.5 to 2.5 miles per pixel (1 to 4 kilometers per pixel).
      As with our Moon and Earth, one side of Europa always faces Jupiter, and that is the side of Europa visible here. Europa’s surface is crisscrossed by fractures, ridges, and bands, which have erased terrain older than about 90 million years.
      Citizen scientist Kevin M. Gill processed the images to enhance the color and contrast.
      NASA/JPL-Caltech/SwRI/MSSS Image processing: Kevin M. Gill CC BY 3.0 To evaluate the survival of amino acids on these worlds, the team mixed samples of amino acids with ice chilled to about minus 321 Fahrenheit (-196 Celsius) in sealed, airless vials and bombarded them with gamma-rays, a type of high-energy light, at various doses. Since the oceans might host microscopic life, they also tested the survival of amino acids in dead bacteria in ice. Finally, they tested samples of amino acids in ice mixed with silicate dust to consider the potential mixing of material from meteorites or the interior with surface ice.
      This image shows experiment samples loaded in the specially designed dewar which will be filled with liquid nitrogen shortly after and placed under gamma radiation. Notice that the flame-sealed test tubes are wrapped in cotton fabric to keep them together because test tubes become buoyant in liquid nitrogen and start floating around in the dewar, interfering with the proper radiation exposure. Candace Davison The experiments provided pivotal data to determine the rates at which amino acids break down, called radiolysis constants. With these, the team used the age of the ice surface and the radiation environment at Europa and Enceladus to calculate the drilling depth and locations where 10 percent of the amino acids would survive radiolytic destruction.
      Although experiments to test the survival of amino acids in ice have been done before, this is the first to use lower radiation doses that don’t completely break apart the amino acids, since just altering or degrading them is enough to make it impossible to determine if they are potential signs of life. This is also the first experiment using Europa/Enceladus conditions to evaluate the survival of these compounds in microorganisms and the first to test the survival of amino acids mixed with dust.
      The team found that amino acids degraded faster when mixed with dust but slower when coming from microorganisms.
      “Slow rates of amino acid destruction in biological samples under Europa and Enceladus-like surface conditions bolster the case for future life-detection measurements by Europa and Enceladus lander missions,” said Pavlov. “Our results indicate that the rates of potential organic biomolecules’ degradation in silica-rich regions on both Europa and Enceladus are higher than in pure ice and, thus, possible future missions to Europa and Enceladus should be cautious in sampling silica-rich locations on both icy moons.”
      A potential explanation for why amino acids survived longer in bacteria involves the ways ionizing radiation changes molecules — directly by breaking their chemical bonds or indirectly by creating reactive compounds nearby which then alter or break down the molecule of interest. It’s possible that bacterial cellular material protected amino acids from the reactive compounds produced by the radiation.
      The research was supported by NASA under award number 80GSFC21M0002, NASA’s Planetary Science Division Internal Scientist Funding Program through the Fundamental Laboratory Research work package at Goddard, and NASA Astrobiology NfoLD award 80NSSC18K1140.
      Share








      Details
      Last Updated Jul 18, 2024 Editor wasteigerwald Contact wasteigerwald william.a.steigerwald@nasa.gov Location NASA Goddard Space Flight Center Related Terms
      Astrobiology Enceladus Europa Goddard Space Flight Center The Search for Life The Solar System Explore More
      8 min read Europa’s Ocean
      Exploration Stories: Favorite Historical Moments – Robert Pappalardo Interview


      Article


      7 years ago
      2 min read Enceladus: What Lies Beneath?


      Article


      16 years ago
      8 min read Are Water Plumes Spraying from Europa? NASA’s Europa Clipper is on the Case
      Finding plumes at Europa is an exciting prospect, but scientists warn it’ll be tricky, even…


      Article


      3 years ago
      View the full article
    • By Space Force
      Col. Patrick took command of SPACEFOR-KOR from his previous assignment at Ramstein Air Base, Germany, he is a career space operations officer, with command experience at the squadron level and joint experience in both Germany and Belgium.

      View the full article
    • By NASA
      Move teams with NASA and Boeing, the SLS (Space Launch System) core stage lead contractor, position the massive rocket stage for NASA’s SLS rocket on special transporters to strategically guide the flight hardware the 1.3-mile distance from the factory floor onto the agency’s Pegasus barge on July 16. The core stage will be ferried to NASA’s Kennedy Space Center in Florida, where it will be integrated with other parts of the rocket that will power NASA’s Artemis II mission. Pegasus is maintained at NASA’s Michoud Assembly Facility. Credit: NASA NASA rolled out the SLS (Space Launch System) rocket’s core stage for the Artemis II test flight from its manufacturing facility in New Orleans on Tuesday for shipment to the agency’s spaceport in Florida. The rollout is key progress on the path to NASA’s first crewed mission to the Moon under the Artemis campaign.
      Using highly specialized transporters, engineers maneuvered the giant core stage from inside NASA’s Michoud Assembly Facility in New Orleans to the agency’s Pegasus barge. The barge will ferry the stage more than 900 miles to NASA’s Kennedy Space Center in Florida, where engineers will prepare it in the Vehicle Assembly Building for attachment to other rocket and Orion spacecraft elements.
      “With Artemis, we’ve set our sights on doing something big and incredibly complex that will inspire a new generation, advance our scientific endeavors, and move U.S. competitiveness forward,” said Catherine Koerner, associate administrator for NASA’s Exploration Systems Development Mission Directorate at NASA Headquarters in Washington. “The SLS rocket is a key component of our efforts to develop a long-term presence at the Moon.”
      Technicians moved the SLS rocket stage from inside NASA Michoud on the 55th anniversary of the launch of Apollo 11 on July 16, 1969. The move of the rocket stage for Artemis marks the first time since the Apollo Program that a fully assembled Moon rocket stage for a crewed mission rolled out from NASA Michoud.
      The SLS rocket’s core stage is the largest NASA has ever produced. At 212 feet tall, it consists of five major elements, including two huge propellant tanks that collectively hold more than 733,000 gallons of super-chilled liquid propellant to feed four RS-25 engines. During launch and flight, the stage will operate for just over eight minutes, producing more than 2 million pounds of thrust to propel four astronauts inside NASA’s Orion spacecraft toward the Moon.
      “The delivery of the SLS core stage for Artemis II to Kennedy Space Center signals a shift from manufacturing to launch readiness as teams continue to make progress on hardware for all major elements for future SLS rockets,” said John Honeycutt, SLS program manager at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “We are motivated by the success of Artemis I and focused on working toward the first crewed flight under Artemis.”
      After arrival at NASA Kennedy, the stage will undergo additional outfitting inside the Vehicle Assembly Building. Engineers then will join it with the segments that form the rocket’s twin solid rocket boosters. Adapters for the Moon rocket that connect it to the Orion spacecraft will be shipped to NASA Kennedy this fall, while the interim cryogenic propulsion stage is already in Florida. Engineers continue to prepare Orion, already at Kennedy, and exploration ground systems for launch and flight.
      All major structures for every SLS core stage are fully manufactured at NASA Michoud. Inside the factory, core stages and future exploration upper stages for the next evolution of SLS, called the Block 1B configuration, currently are in various phases of production for Artemis III, IV, and V. Beginning with Artemis III, to better optimize space at Michoud, Boeing, the SLS core stage prime contractor, will use space at NASA Kennedy for final assembly and outfitting activities.
      Building, assembling, and transporting the SLS core stage is a collaborative effort for NASA, Boeing, and lead RS-25 engines contractor Aerojet Rocketdyne, an L3Harris Technologies company. All 10 NASA centers contribute to its development with more than 1,100 companies across the United States contributing to its production. 
      NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      For more on NASA’s Artemis campaign, visit: 
      http://www.nasa.gov/artemis
      -end- 
      Madison Tuttle/Rachel Kraft
      Headquarters, Washington
      202-358-1600
      madison.e.tuttle@nasa.gov/rachel.h.kraft@nasa.gov
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034  
      corinne.m.beckinger@nasa.gov
      Share
      Details
      Last Updated Jul 16, 2024 LocationNASA Headquarters Related Terms
      Space Launch System (SLS) Artemis Artemis 2 Common Exploration Systems Development Division Exploration Systems Development Mission Directorate Marshall Space Flight Center Michoud Assembly Facility View the full article
    • By NASA
      NASA Deputy Administrator Pam Melroy and senior NASA leaders conduct the first bilateral meeting with KASA’s administrator, Dr. Young-bin Yoon on Monday, July 15, 2024 in Busan, Korea. NASA/Amber Jacobson NASA Deputy Administrator Pam Melroy conducted the first bilateral meeting on Monday with Dr. Young-bin Yoon, administrator of the newly established KASA (Korea AeroSpace Administration), which opened on May 27. The creation of KASA underscores the Republic of Korea’s commitment to advancing space exploration.
      The bilateral meeting marks a pivotal moment for a NASA’s relationship with KASA, building upon decades of bilateral ties with several Korean ministries and institutions. Melroy emphasized enhancing cooperation under the Artemis program and expanding science collaboration during discussions with Yoon. Looking ahead, NASA and KASA are exploring a wide range of opportunities and fostering innovation in new areas.
      Over the past year, the U.S.-Korea space relationship has seen significant progress, highlighted by increased engagements and collaborative initiatives across various space disciplines. These efforts include sharing data from the Korea Pathfinder Lunar Orbiter and leveraging NASA’s Deep Space Network, showcasing Korea’s commitment to open science, and enabling scientists globally to access valuable data for future lunar activities.
      Historically, NASA has collaborated across a wide range of disciplines with KARI (Korea Aerospace Research Institute) and KASI (Korea Astronomy and Space Science Institute). The establishment of KASA allows Korea to focus its space efforts under one agency, further enhancing space collaboration and cooperation.
      View the full article
  • Check out these Videos

×
×
  • Create New...