Jump to content

California continues to burn


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      President and CEO of the Hispanic Heritage Foundation Jose Antonio Tijerino, left, and NASA Deputy Administrator Pam Melroy, sign a Space Act Agreement between the HHF and NASA to collaborate and expand STEM opportunities for Latino K-12 and university students and reduce barriers to agency activities and opportunities, Monday, Sept. 30, 2024, at the NASA Headquarters Mary W. Jackson Building in Washington.NASA/Bill Ingalls During an event at NASA Headquarters in Washington Monday, the agency and the Hispanic Heritage Foundation signed a Space Act Agreement to collaborate and expand STEM opportunities for Latino K-12 and university students and reduce barriers to agency activities and opportunities.
      The signing is the latest in a series of efforts by NASA to expand access to STEM education for underrepresented communities across the nation.
      “Through this agreement, NASA and the Hispanic Heritage Foundation are not just formalizing a partnership; we are igniting a commitment to innovation that will shape the future of our endeavors,” said Deputy Administrator Pam Melroy. “This initiative will help build a diverse future science, technology, engineering, and mathematics workforce, showcasing our commitment to making America’s space agency accessible to all.” 
      As part of the agreement, the Hispanic Heritage Foundation will incorporate NASA STEM education resources, content, and themes into its Latinos on the Fast Track (LOFT) program, which aims to connect, inspire, and empower young Latino professionals and college students on their career journey. In turn, NASA will provide access to aerospace STEM education professionals to support technical reviews for the development of new curriculum materials and facilitate information sharing with NASA experts and mentors who will lead presentations and workshops to expose students to STEM careers. 
      “The Hispanic Heritage Foundation is thrilled to partner with NASA to expand STEM opportunities and expose Latinos to career pathways in aerospace and space travel,” said Antonio Tijerino, president and CEO of the Hispanic Heritage Foundation. “This innovative partnership with NASA will allow us to expand our mission even beyond our planet!”
      While initial efforts will be led by NASA’s Office of STEM Engagement, the umbrella agreement also allows for further collaboration and partnership in the future. Specifically, the agency and the Hispanic Heritage Foundation will look to support certain areas of NASA’s Equity Action Plan.
      NASA works to explore the secrets of the universe and solve the world’s most complex problems, which requires creating space for all people to participate in and learn from its work in space. Providing access to opportunities where young minds can be curious and see themselves potentially at NASA and beyond is how the agency will continue to inspire the next generation of STEM innovators.
      For more information on how NASA inspires students to pursue STEM visit:
      https://www.nasa.gov/learning-resources
      Share
      Details
      Last Updated Sep 30, 2024 Related Terms
      General Explore More
      3 min read NASA’s BioSentinel Studies Solar Radiation as Earth Watches Aurora
      Article 4 days ago 9 min read SARP West 2024 Oceans Group
      Article 5 days ago 10 min read SARP West 2024 Whole Air Sampling (WAS) Group
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Manufacturing equipment that will be used to build components for NASA’s SLS (Space Launch System) rocket for future Artemis missions is being installed at the agency’s Michoud Assembly Facility in New Orleans, Louisiana. The tooling will be used to produce the SLS rocket’s advanced exploration upper stage, or EUS, in the factory’s new manufacturing area, picture here.NASA/Evan Deroche NASA Michoud Assembly facility technicians Cameron Shiro (foreground), Michael Roberts, and Tien Nguyen (background) install the strain gauge on the forward adapter barrel structural test article for the exploration upper stage of the SLS rocket. NASA/Eric Bordelon NASA Michoud Assembly facility quality inspectors Michael Conley (background) and Michael Kottemann perform Ultrasonic Test (UT) inspections on the mid-body V-Strut for a structural test article for the SLS rocket’s advanced exploration upper stage, or EUS, in the factory’s new manufacturing area. NASA/Evan Deroche Manufacturing equipment that will be used to build components for NASA’s SLS (Space Launch System) rocket for future Artemis missions is being installed at the agency’s Michoud Assembly Facility in New Orleans, Louisiana.
      The novel tooling will be used to produce the SLS rocket’s advanced exploration upper stage, or EUS, in the factory’s new manufacturing area. The EUS will serve as the upper, or in-space, stage for all Block 1B and Block 2 SLS flights in both crew and cargo configurations.
      In tandem, NASA and Boeing, the SLS lead contractor for the core stage and exploration upper stage, are producing structural test articles and flight hardware structures for the upper stage at Michoud and the agency’s Marshall Space Flight Center in Huntsville, Alabama. Early manufacturing is already underway at Michoud while preparations for an engine-firing test series for the upper stage are in progress at nearby Stennis Space Center in Bay St. Louis, Mississippi.
      “The newly modified manufacturing space for the exploration upper stage signifies the start of production for the next evolution of SLS Moon rockets at Michoud,” said Hansel Gill, director at Michoud. “With Orion spacecraft manufacturing and SLS core stage assembly in flow at Michoud for the past several years, standing up a new production line and enhanced capability at Michoud for EUS is a significant achievement and a reason for anticipation and enthusiasm for Michoud and the SLS Program.”
      The advanced upper stage for SLS is planned to make its first flight with Artemis IV and replaces the single-engine Interim Cryogenic Propulsion Stage (ICPS) that serves as the in-space stage on the initial SLS Block 1 configuration of the rocket. With its larger liquid hydrogen and liquid oxygen propellant tanks feeding four L3 Harris Technologies- built RL10C-3 engines, the EUS generates nearly four times the thrust of the ICPS, providing unrivaled lift capability to the SLS Block 1B and Block 2 rockets and making a new generation of crewed lunar missions possible.
      This upgraded and more powerful rocket will increase the SLS rocket’s payload to the Moon by 40%, from 27 metric tons (59,525 lbs.) with Block 1 to 38 metric tons (83,776 lbs.) in the crew configuration.  Launching crewed missions along with other large payloads enables multiple large-scale objectives to be accomplished in a single mission.
      Through the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the Moon. The rocket is part of NASA’s deep space exploration plans, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, Gateway in orbit around the Moon, and commercial human landing systems. NASA’s SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      NASA’s Marshall Space Flight Center manages the SLS Program and Michoud.
      For more on SLS, visit: 
      https://www.nasa.gov/humans-in-space/space-launch-system
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center
      Huntsville, Ala.
      256-544-0034
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This image, taken from a data visualization, shows Arctic sea ice minimum extent on September 11, 2024. The yellow boundary shows the minimum extent averaged over the 30-year period from 1981 to 2010. Download high-resolution video and images from NASA’s Scientific Visualization Studio: https://svsdev.gsfc.nasa.gov/5382NASA’s Scientific Visualization Studio/Trent L. Schindler Arctic sea ice retreated to near-historic lows in the Northern Hemisphere this summer, likely melting to its minimum extent for the year on Sept.11, 2024, according to researchers at NASA and the National Snow and Ice Data Center (NSIDC). The decline continues the decades-long trend of shrinking and thinning ice cover in the Arctic Ocean.
      The amount of frozen seawater in the Arctic fluctuates during the year as the ice thaws and regrows between seasons. Scientists chart these swings to construct a picture of how the Arctic responds  over time to rising air and sea temperatures and longer melting seasons. Over the past 46 years, satellites have observed persistent trends of more melting in the summer and less ice formation in winter.
      This summer, Arctic sea ice decreased to a its minimum extent on September 11, 2024. According to the National Snow and Ice Data Center this is the 7th lowest in the satellite record). The decline continues the long-term trend of shrinking ice cover in the Arctic Ocean.
      Credit: NASA’s Goddard Space Flight Center Tracking sea ice changes in real time has revealed wide-ranging impacts, from losses and changes in polar wildlife habitat to impacts on local communities in the Arctic and international trade routes.
      This year, Arctic sea ice shrank to a minimal extent of 1.65 million square miles (4.28 million square kilometers). That’s about 750,000 square miles (1.94 million square kilometers) below the 1981 to 2010 end-of-summer average of 2.4 million square miles (6.22 million square kilometers). The difference in ice cover spans an area larger than the state of Alaska. Sea ice extent is defined as the total area of the ocean with at least 15% ice concentration.
      Seventh-Lowest in Satellite Record
      This year’s minimum remained above the all-time low of 1.31 million square miles (3.39 million square kilometers) set in September 2012. While sea ice coverage can fluctuate from year to year, it has trended downward since the start of the satellite record for ice in the late 1970s. Since then, the loss of sea ice has been about 30,000 square miles (77,800 square kilometers) per year, according to NSIDC.
      Scientists currently measure sea ice extent using data from passive microwave sensors aboard satellites in the Defense Meteorological Satellite Program, with additional historical data from the Nimbus-7 satellite, jointly operated by NASA and the National Oceanic and Atmospheric Administration (NOAA).
      Today, the overwhelming majority of ice in the Arctic Ocean is thinner, first-year ice, which is less able to survive the warmer months. There is far, far less ice that is three years or older now,
      Nathan Kurtz
      Chief, NASA's Cryospheric Sciences Laboratory
      Sea ice is not only shrinking, it’s getting younger, noted Nathan Kurtz, lab chief of NASA’s Cryospheric Sciences Laboratory at the agency’s Goddard Space Flight Center in Greenbelt, Maryland.
      “Today, the overwhelming majority of ice in the Arctic Ocean is thinner, first-year ice, which is less able to survive the warmer months. There is far, far less ice that is three years or older now,” Kurtz said.
      Ice thickness measurements collected with spaceborne altimeters, including NASA’s ICESat and ICESat-2 satellites, have found that much of the oldest, thickest ice has already been lost. New research out of NASA’s Jet Propulsion Laboratory in Southern California shows that in the central Arctic, away from the coasts, fall sea ice now hovers around 4.2 feet (1.3 meters) thick, down from a peak of 8.8 feet (2.7 meters) in 1980.
      Another Meager Winter Around Antarctica
      Sea ice in the southern polar regions of the planet was also low in 2024. Around Antarctica, scientists are tracking near record-low sea ice at a time when it should have been growing extensively during the Southern Hemisphere’s darkest and coldest months.
      Ice around the continent is on track to be just over 6.6 million square miles (16.96 million square kilometers). The average maximum extent between 1981 and 2010 was 7.22 million square miles (18.71 million square kilometers).
      The meager growth so far in 2024 prolongs a recent downward trend. Prior to 2014, sea ice in the Antarctic was increasing slightly by about 1% per decade. Following a spike in 2014, ice growth has fallen dramatically. Scientists are working to understand the cause of this reversal. The recurring loss hints at a long-term shift in conditions in the Southern Ocean, likely resulting from global climate change. 
      “While changes in sea ice have been dramatic in the Arctic over several decades, Antarctic sea ice was relatively stable. But that has changed,” said Walt Meier, a sea ice scientist at NSIDC. “It appears that global warming has come to the Southern Ocean.”
      In both the Arctic and Antarctic, ice loss compounds ice loss. This is due to the fact that while bright sea ice reflects most of the Sun’s energy back to space, open ocean water absorbs 90% of it. With more of the ocean exposed to sunlight, water temperatures rise, further delaying sea ice growth. This cycle of reinforced warming is called ice-albedo feedback.
      Overall, the loss of sea ice increases heat in the Arctic, where temperatures have risen about four times the global average, Kurtz said.
      About the Author
      Sally Younger
      Senior Science Writer
      Share
      Details
      Last Updated Sep 24, 2024 LocationGoddard Space Flight Center Related Terms
      Earth Ice & Glaciers Explore More
      4 min read NASA Helps Build New Federal Sea Level Rise Website
      Article 27 mins ago 4 min read NASA Data Helps Protect US Embassy Staff from Polluted Air
      United States embassies and consulates, along with American citizens traveling and living abroad, now have…
      Article 4 days ago 4 min read Going Back-to-School with NASA Data
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Earlier this month, nine small businesses received 2023 NASA Small Business Innovation Research (SBIR) Ignite Phase II awards to further develop technologies that may be used in the agency’s missions and in the commercial space industry. 

      The SBIR Ignite Phase II awardees, who will receive up to $850,000 to fund their projects, are developing technology capabilities in the detection of wildfires, support for water management in agriculture, in-space debris detection, mineral mining from lunar regolith, in-space production, and more. These capabilities are vital to supporting deep space exploration, low Earth orbit missions, and preserving life on our home planet for the benefit of all. The businesses initially were selected for Phase I awards in 2023 and provided six months and up to $150,000 to prove their concepts before competing for Phase II. 
      “We want to support innovators across the aerospace industry because their technologies have the potential to make a big impact in the commercial market. A rich and diverse marketplace creates more opportunity for us all. These Phase II awards illuminate a clear path for a unique range of technologies that we believe will positively influence the lives of all Americans.”
      Jason L. Kessler
      NASA SBIR/STTR Program Executive

      The SBIR Ignite pilot initiative supports product-driven small businesses, startups, and entrepreneurs that have commercialization at the forefront of their innovation strategies and processes but that are not targeting NASA as a primary customer. The pilot initiative provides funding and other support to mitigate risk in technologies that have strong commercial potential by offering lower barriers to entry, a streamlined review and selection process, and accelerated technology development and awards as compared to the NASA SBIR program’s main solicitation. It also focuses on helping make participating companies more appealing to investors, customers, and partners, while fulfilling SBIR’s mission of increasing commercialization of innovations derived from federal research and development. 

      While the agency’s main Small Business Innovation Research and Small Business Technology Transfer solicitations focus on technologies with potential for infusion in both NASA missions and commercialization in the marketplace, the SBIR Ignite opportunity is less prescriptive and focuses on topics that are relevant to emerging commercial markets in aerospace, such as accelerating in-space production applications in low Earth orbit.  

      The awarded companies are: 
      Astral Forge, LLC, Palo Alto, California  Astrobotic Technology Inc., Pittsburgh  Benchmark Space Systems, Burlington, Vermont  Brayton Energy, LLC, Hampton, New Hampshire  Channel-Logistics LLC dba Space-Eyes, Miami  GeoVisual Analytics, Westminster, Colorado  Space Lab Technologies, LLC, Boulder, Colorado  Space Tango, Lexington, Kentucky  VerdeGo Aero, De Leon Springs, Florida 
      The third year of NASA Small Business Innovation Research (SBIR) Ignite is underway, as the 2024 SBIR Ignite Phase I solicitation closed on July 30, 2024. Those selections are expected to be announced Fall 2024.
      NASA’s Small Business Innovation Research and Small Business Technology Transfer program is part of NASA’s Space Technology Mission Directorate and is managed by NASA’s Ames Research Center in Silicon Valley. 
       

      View the full article
    • By NASA
      Brad Flick, center director at NASA’s Armstrong Flight Research Center in Edwards, California, presents a 2024 NASA College Scholarship Award to Sabrina Redifer. From left to right are Sabrina Redifer’s parents Matthew and Saynne Redifer, Flick, Sabrina Redifer, and her sister Samantha Redifer.NASA/Steve Freeman Sabrina Redifer, a 2024 graduate of Quartz Hill High School in Lancaster, California, won a NASA College Scholarship Award.
      Redifer plans to major this fall in molecular, cellular, and developmental biology at the University of California, Los Angeles. She earned a 4.0 grade-point average – a weighted GPA of 5.29 – and ranked fourth academically out of a class of 794 students.
      “My dream of becoming a physician stems from a love of science, innovation, and equality,” she said. “I want to develop new treatments through molecular and cellular research, and I want to make those treatments accessible to all people, regardless of their economic status or where they live.”
      Redifer won the scholarship following an agency-wide application for NASA employee dependents planning to pursue a science, technology, engineering, or math degree. The scholarship is $2,000 per year for up to four years.
      She is the daughter of Matthew Redifer, who is X-59 aircraft flight systems lead at NASA’s Armstrong Flight Research Center in Edwards, California, and Saynne Redifer, of Palmdale, California.
      “I didn’t think I was going to win,” Sabrina Redifer said. “I was super excited when I did!”
      Sabrina Redifer is a valedictorian, received a 2023 and a 2024 Advanced Placement Scholar Award with Distinction, and the Advanced Placement Capstone Diploma, a special two-year course conducted in tandem with Advanced Placement classes.
      Redifer was president of Quartz Hill High School’s National Honor Society, the varsity girls golf team president, and co-president of the Asian Student Union. She qualified for California Interscholastic Federation golf tournaments multiple times and ranked top six in the Golden League all four years.
      In her community, she volunteered for two years at the Antelope Valley Medical Center in the gift shop and emergency room and at the Quartz Hill Food Pantry, where she helped pack food
      for distribution. In addition, she shadowed physicians this summer, following and observing as they met with patients.
      For more about NASA’s Armstrong Flight Research Center, visit:
      http://www.nasa.gov/centers/armstrong
      – End –
      For more information, contact:
      Jay Levine
      NASA’s Armstrong Flight Research Center
      (661) 276-3459
      jay.levine-1@nasa.gov
      Share
      Details
      Last Updated Aug 15, 2024 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center People of Armstrong Explore More
      3 min read NASA’s X-59 Progresses Through Tests on the Path to Flight
      Article 2 days ago 3 min read NASA Aircraft Gathers 150 Hours of Data to Better Understand Earth
      Article 1 week ago 2 min read NASA Prepares for Air Taxi Passenger Comfort Studies
      Article 2 months ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      People of NASA
      Armstrong People
      Women’s History Month
      View the full article
  • Check out these Videos

×
×
  • Create New...