Jump to content

Did the Galactic Federation just release its Prime Directive?


Recommended Posts

In this Exopolitics Today interview, Elena Danaan, a former professional French archeologist, discusses a recent communication she received that details the Prime Directive of the Galactic Federation of Worlds. 

Galactic%2BFederation.jpg

Elena is publicly releasing the ten articles making up the Prime Directive, along with commentary by her primary extraterrestrial contact, Thor Han Eredyon. 

The contents of the Prime Directive are known to participants in secret meetings and agreements that have occurred between the Galactic Federation and national space program leaders and major aerospace corporations. 

Its contents have not been publicly released until today. In the discussion with Dr Michael Salla, the contents and implications of the Prime Directive are analyzed in terms of their scope and implications for humanity. 


 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronaut Andre Douglas poses for a portrait at NASA’s Johnson Space Center in Houston.Credits: NASA/Josh Valcarcel NASA has selected astronaut Andre Douglas as its backup crew member for the agency’s Artemis II test flight, the first crewed mission under NASA’s Artemis campaign.
      Douglas will train alongside NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and Canadian Space Agency (CSA) astronaut Jeremy Hansen.
      In the event a NASA astronaut is unable to take part in the flight, Douglas would join the Artemis II crew.
      “Andre’s educational background and extensive operational experience in his various jobs prior to joining NASA are clear evidence of his readiness to support this mission,” said Joe Acaba, chief astronaut at NASA’s Johnson Space Center in Houston. “He excelled in his astronaut candidate training and technical assignments, and we are confident he will continue to do so as NASA’s backup crew member for Artemis II.”  
      The CSA announced Jenni Gibbons as its backup crew member in November 2023. Gibbons would step into the mission to represent Canada should Hansen not be available.
      “Canada’s seat on the historic Artemis II flight is a direct result of our contribution of Canadarm3 to the lunar Gateway. Jenni Gibbons’ assignment as backup is of utmost importance for our country,” said CSA President Lisa Campbell. “Since being recruited, Jenni has distinguished herself repeatedly through her work with NASA and the CSA. She is also a tremendous role model for Canada’s future scientists, engineers, and explorers.”
      The selection of Douglas and Gibbons as backup crew members for Artemis II is independent of the selection of crew members for Artemis III. NASA has not yet selected crew members for Artemis flights beyond Artemis II. All active NASA astronauts are eligible for assignment to any human spaceflight mission.
      The approximately 10-day Artemis II test flight will launch on the agency’s powerful SLS (Space Launch System) rocket, prove the Orion spacecraft’s life-support systems, and validate the capabilities and techniques needed for humans to live and work in deep space.
      More on Artemis II backup crew
      Douglas graduated from NASA’s astronaut candidate training program in March 2024. He is a Virginia native and earned a bachelor’s degree in Mechanical Engineering from the U.S. Coast Guard Academy in New London, Connecticut, as well as four post-graduate degrees from various institutions, including a doctorate in Systems Engineering from George Washington University in Washington. Douglas served in the U.S. Coast Guard as a naval architect, salvage engineer, damage control assistant, and officer of the deck. He also worked as a staff member at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, working on maritime robotics, planetary defense, and space exploration missions for NASA. Douglas participated in the Joint EVA and Human Surface Mobility Test Team 5, working with a specialized group that develops, integrates, and executes human-in-the-loop tests, analog missions, and Moonwalks. Most recently, Douglas worked with teams on the development of the lunar terrain vehicle, pressurized rover, lunar Gateway and lunar spacesuit.
      Gibbons was recruited as a CSA astronaut in 2017 and completed her basic training in 2020. Since then, Gibbons has continued to serve Canada’s space program and has worked in different positions, including Mission Control as a capsule communicator (CAPCOM) during spacewalks, and commercial spacecraft and daily International Space Station operations. Gibbons holds an honors bachelor’s degree in Mechanical Engineering from McGill University in Montreal. While at McGill, she conducted research on flame propagation in microgravity in collaboration with CSA and Canada’s National Research Council Flight Research Laboratory in Ontario. She holds a doctorate in engineering from Jesus College at the University of Cambridge, England.
      Under NASA’s Artemis campaign, the agency is establishing the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all. 
      Learn more about NASA’s Artemis campaign at:
      https://www.nasa.gov/artemis
      -end-
      Rachel Kraft/Madison Tuttle
      Headquarters, Washington
      202-358-1100
      rachel.h.kraft@nasa.gov/madison.e.tuttle@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      Share
      Details
      Last Updated Jul 03, 2024 LocationNASA Headquarters Related Terms
      Artemis 2 Andre Douglas Artemis Astronauts Humans in Space View the full article
    • By Space Force
      Pituffik Space Base hosted King Frederik X, king of the Kingdom of Denmark, his wife, Queen Mary, queen of the Kingdom of Denmark, and Greenland’s Prime Minister Múte Bourup Egede, June 29.

      View the full article
    • By European Space Agency
      Two large asteroids will safely pass Earth this week, a rare occurrence perfectly timed to commemorate this year's Asteroid Day. Neither poses any risk to our planet, but one of them was only discovered a week ago, highlighting the need to continue improving our ability to detect potentially hazardous object in our cosmic neighbourhood.
      View the full article
    • By NASA
      Representatives from NASA, FEMA, and the planetary defense community participate in the 5th Planetary Defense Interagency Tabletop Exercise to inform and assess our ability as a nation to respond effectively to the threat of a potentially hazardous asteroid or comet.Credits: NASA/JHU-APL/Ed Whitman For the benefit of all, NASA released a summary Thursday of the fifth biennial Planetary Defense Interagency Tabletop Exercise. NASA’s Planetary Defense Coordination Office, in partnership with FEMA (Federal Emergency Management Agency) and with the assistance of the U.S. Department of State Office of Space Affairs, convened the tabletop exercise to inform and assess our ability as a nation to respond effectively to the threat of a potentially hazardous asteroid or comet.
      Although there are no known significant asteroid impact threats for the foreseeable future, hypothetical exercises provide valuable insights by exploring the risks, response options, and opportunities for collaboration posed by varying scenarios, from minor regional damage with little warning to potential global catastrophes predicted years or even decades in the future.
      “The uncertainties in these initial conditions for the exercise allowed participants to consider a particularly challenging set of circumstances,” said Lindley Johnson, planetary defense officer emeritus NASA Headquarters in Washington. “A large asteroid impact is potentially the only natural disaster humanity has the technology to predict years in advance and take action to prevent.”
      During the exercise, participants considered potential national and global responses to a hypothetical scenario in which a never-before-detected asteroid was identified that had, according to initial calculations, a 72% chance of hitting Earth in approximately 14 years. The preliminary observations described in the exercise, however, were not sufficient to precisely determine the asteroid’s size, composition, and long-term trajectory. To complicate this year’s hypothetical scenario, essential follow-up observations would have to be delayed for at least seven months – a critical loss of time – as the asteroid passed behind the Sun as seen from Earth’s vantage point in space.
      Conducting exercises enable government stakeholders to identify and resolve potential issues as part of preparation for any real-world situation. It was held in April at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, and brought together nearly 100 representatives from across U.S. government agencies and, for the first time, international collaborators on planetary defense.
      “Our mission is helping people before, during, and after disasters,” said Leviticus “L.A.” Lewis, FEMA detailee to NASA’s Planetary Defense Coordination Office. “We work across the country every day before disasters happen to help people and communities understand and prepare for possible risks. In the event of a potential asteroid impact, FEMA would be a leading player in interagency coordination.” 
      This exercise was the first to use data from NASA’s DART (Double Asteroid Redirection Test) mission, the first in-space demonstration of a technology for defending Earth against potential asteroid impacts. The DART spacecraft, which impacted the asteroid moonlet Dimorphos on Sept. 26, 2022, confirmed a kinetic impactor could change the trajectory of an asteroid. Applying this or any type of technology to an actual impact threat would require many years of advance planning.
      To help ensure humanity will have the time needed to evaluate and respond to a potentially hazardous asteroid or comet, NASA continues the development of its NEO Surveyor (Near-Earth Object Surveyor), an infrared space telescope designed specifically to expedite our ability to discover and characterize most of the potentially hazardous near-Earth objects many years before they could become an impact threat. The agency’s NEO Surveyor’s proposed launch date is set for June 2028.
      NASA will publish a complete after-action report for the tabletop exercise later, which will include strengths and gaps identified from analysis of the response, other discussions during the exercise, and recommendations for improvement.
      “These outcomes will help to shape future exercises and studies to ensure NASA and other government agencies continue improving planetary defense preparedness,” said Johnson.
      NASA established the Planetary Defense Coordination Office in 2016 to manage the agency’s ongoing planetary-defense efforts. Johns Hopkins APL managed the DART mission for NASA as a project of the agency’s Planetary Missions Program Office.
      To learn more about planetary defense at NASA, visit:
      https://science.nasa.gov/planetary-defense/
      -end-
      Charles Blue / Karen Fox
      Headquarters, Washington 
      202-802-5345 / 202-358-1600
      charles.e.blue@nasa.gov / karen.fox@nasa.gov
      Share
      Details
      Last Updated Jun 20, 2024 LocationNASA Headquarters Related Terms
      Planetary Defense Coordination Office DART (Double Asteroid Redirection Test) NEO Surveyor (Near-Earth Object Surveyor Space Telescope) Planetary Science Division Science & Research Science Mission Directorate View the full article
    • By NASA
      6 Min Read First of Its Kind Detection Made in Striking New Webb Image
      The Serpens Nebula from NASA’s James Webb Space Telescope. Alignment of bipolar jets confirms star formation theories
      For the first time, a phenomenon astronomers have long hoped to directly image has been captured by NASA’s James Webb Space Telescope’s Near-Infrared Camera (NIRCam). In this stunning image of the Serpens Nebula, the discovery lies in the northern area (seen at the upper left) of this young, nearby star-forming region.
      Astronomers found an intriguing group of protostellar outflows, formed when jets of gas spewing from newborn stars collide with nearby gas and dust at high speeds. Typically these objects have varied orientations within one region. Here, however, they are slanted in the same direction, to the same degree, like sleet pouring down during a storm.
      Image: Serpens Nebula (NIRCam)
      In this image of the Serpens Nebula from NASA’s James Webb Space Telescope, astronomers found a grouping of aligned protostellar outflows within one small region (the top left corner). Serpens is a reflection nebula, which means it’s a cloud of gas and dust that does not create its own light, but instead shines by reflecting the light from stars close to or within the nebula. The discovery of these aligned objects, made possible due to Webb’s exquisite spatial resolution and sensitivity in near-infrared wavelengths, is providing information into the fundamentals of how stars are born.
      “Astronomers have long assumed that as clouds collapse to form stars, the stars will tend to spin in the same direction,” said principal investigator Klaus Pontoppidan, of NASA’s Jet Propulsion Laboratory in Pasadena, California. “However, this has not been seen so directly before. These aligned, elongated structures are a historical record of the fundamental way that stars are born.”
      So just how does the alignment of the stellar jets relate to the rotation of the star? As an interstellar gas cloud crashes in on itself to form a star, it spins more rapidly. The only way for the gas to continue moving inward is for some of the spin (known as angular momentum) to be removed. A disk of material forms around the young star to transport material down, like a whirlpool around a drain. The swirling magnetic fields in the inner disk launch some of the material into twin jets that shoot outward in opposite directions, perpendicular to the disk of material.
      In the Webb image, these jets are signified by bright clumpy streaks that appear red, which are shockwaves from the jet hitting surrounding gas and dust. Here, the red color represents the presence of molecular hydrogen and carbon monoxide.
      “This area of the Serpens Nebula – Serpens North – only comes into clear view with Webb,” said lead author Joel Green of the Space Telescope Science Institute in Baltimore. “We’re now able to catch these extremely young stars and their outflows, some of which previously appeared as just blobs or were completely invisible in optical wavelengths because of the thick dust surrounding them.”
      Astronomers say there are a few forces that potentially can shift the direction of the outflows during this period of a young star’s life. One way is when binary stars spin around each other and wobble in orientation, twisting the direction of the outflows over time.
      Stars of the Serpens
      The Serpens Nebula, located 1,300 light-years from Earth, is only one or two million years old, which is very young in cosmic terms. It’s also home to a particularly dense cluster of newly forming stars (~100,000 years old), seen at the center of this image. Some of these stars will eventually grow to the mass of our Sun.
      “Webb is a young stellar object-finding machine,” Green said. “In this field, we pick up sign posts of every single young star, down to the lowest mass stars.”
      “It’s a very complete picture we’re seeing now,” added Pontoppidan.
      So, throughout the region in this image, filaments and wisps of different hues represent reflected starlight from still-forming protostars within the cloud. In some areas, there is dust in front of that reflection, which appears here with an orange, diffuse shade.
      This region has been home to other coincidental discoveries, including the flapping “Bat Shadow,” which earned its name when 2020 data from NASA’s Hubble Space Telescope revealed a star’s planet-forming disk to flap, or shift. This feature is visible at the center of the Webb image.
      Future Studies
      The new image, and serendipitous discovery of the aligned objects, is actually just the first step in this scientific program. The team will now use Webb’s NIRSpec (Near-Infrared Spectrograph) to investigate the chemical make-up of the cloud.
      The astronomers are interested in determining how volatile chemicals survive star and planet formation. Volatiles are compounds that sublimate, or transition from a solid directly to a gas, at a relatively low temperature – including water and carbon monoxide. They’ll then compare their findings to amounts found in protoplanetary disks of similar-type stars.
      “At the most basic form, we are all made of matter that came from these volatiles. The majority of water here on Earth originated when the Sun was an infant protostar billions of years ago,” Pontoppidan said. “Looking at the abundance of these critical compounds in protostars just before their protoplanetary disks have formed could help us understand how unique the circumstances were when our own solar system formed.”
      These observations were taken as part of General Observer program 1611. The team’s initial results have been accepted in the Astrophysical Journal.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Science Paper: The science paper by J. Green et al., PDF (7.93 MB) 
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hanna Braun hbraun@stsci.edu Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Animation Video – “Exploring Star and Planet Formation”
      Infographic – “Recipe for Planet Formation”
      Science Snippets Video -“Dust and the Formation of Planetary Systems“
      Interactive: Explore the jets emitted by young stars in multiple wavelengths 
      More Webb News
      More Webb Images
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Stars



      Universe


      Share








      Details
      Last Updated Jun 20, 2024 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Goddard Space Flight Center James Webb Space Telescope (JWST) Nebulae Science & Research Star-forming Nebulae The Universe
      View the full article
  • Check out these Videos

×
×
  • Create New...