Jump to content

Get in Astronaut, We're Going Exploring


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronaut and Expedition 72 Flight Engineer Nick Hague in the space station cupola. (Credit: NASA) Students from Iowa will have the opportunity to hear NASA astronaut Nick Hague answer their prerecorded questions while he’s serving an expedition aboard the International Space Station on Monday, Oct. 21.
      Watch the 20-minute space-to-Earth call at 11:40 a.m. EDT on NASA+. Students from Iowa State University in Ames, First Robotics Clubs, World Food Prize Global Youth Institute, and Plant the Moon teams will focus on food production in space. Learn how to watch NASA content on various platforms, including social media.
      Media interested in covering the event must contact Angie Hunt by 5 p.m., Friday, Oct.18 at amhunt@iastate.edu or 515-294-8986.
      For more than 23 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos and lesson plans highlighting space station research at:
      https://www.nasa.gov/stemonstation
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Sandra Jones 
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Dr. Rainee Simons (right) and Dr. Félix Miranda work together to create technology supporting heart health at NASA’s Glenn Research Center in Cleveland.Credit: NASA Prioritizing health is important on Earth, and it’s even more important in space. Exploring beyond the Earth’s surface exposes humans to conditions that can impact blood pressure, bone density, immune health, and much more. With this in mind, two NASA inventors joined forces 20 years ago to create a way to someday monitor astronaut heart health on long-duration spaceflight missions. This technology is now being used to monitor the health of patients with heart failure on Earth through a commercial product that is slated to launch in late 2024.
      NASA inventors Dr. Rainee Simons, senior microwave communications engineer, and Dr. Félix Miranda, deputy chief of the Communications and Intelligent Systems Division, applied their expertise in radio frequency integrated circuits and antennas to create a miniature implantable sensor system to keep track of astronaut health in space. The technology, which was created at NASA’s Glenn Research Center in Cleveland with seed funds from the agency’s Technology Transfer Office, consists of a small bio-implanted sensor that can transmit a person’s health status from a sensor to a handheld device. The sensor is battery-less and wireless.
      “You’re able to insert the sensor and bring it up to the heart or the aorta like a stent – the same process as in a stent implant,” Simons said. “No major surgery is needed for implantation, and operating the external handheld device, by the patient, is simple and easy.”
      After Glenn patented the invention, Dr. Anthony Nunez, a heart surgeon, and Harry Rowland, a mechanical engineer, licensed the technology and founded a digital health medical technology company in 2007 called Endotronix, now an Edwards Lifesciences company. The company focuses on enabling proactive heart failure management with data-driven patient-to-physician solutions that detect dangers, based on the Glenn technology. The Endotronix primary monitoring system is called the Cordella Pulmonary Artery (PA) Sensor System. Dr. Nunez became aware of the technology while reading a technical journal that featured the concept, and he saw parallels that could be used in the medical technology industry.
      The concept has proven to be an aid for heart failure management through several clinical trials, and patients have experienced improvements in their quality of life. Based on the outcome of Endotronix’s clinical testing to demonstrate safety and effectiveness, in June 2024 the U.S. Food and Drug Administration granted premarket approval to the Cordella PA Sensor System. The system is meant to help clinicians remotely assess, treat, and manage heart failure in patients at home with the goal of reducing hospitalizations.
      “If you look at the statistics of how many people have congestive heart failure, high blood pressure… it’s a lot of people,” Miranda said. “To have the medical community saying we have a device that started from NASA’s intellectual property – and it could help people worldwide to be healthy, to enjoy life, to go about their business – is highly gratifying, and it’s very consistent with NASA’s mission to do work for the benefit of all.”
      Explore More
      2 min read Controlled Propulsion for Gentle Landings 
      A valve designed for NASA rover landings enables effective stage separations for commercial spaceflight
      Article 40 mins ago 2 min read Sail Along with NASA’s Solar Sail Tech Demo in Real-Time Simulation
      NASA invites the public to virtually sail along with the Advanced Composite Solar Sail System‘s space…
      Article 21 hours ago 4 min read Lunar Autonomy Mobility Pathfinder: An OTPS-Sponsored Workshop
      Article 1 day ago View the full article
    • By NASA
      Learn Home How Do Astronauts Get in… Astronauts Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      How Do Astronauts Get in Shape? – New “Ask SME” from NASA eClips
      The NASA Science Activation program’s NASA eClips project, led by the National Institute of Aerospace (NIA), aims to increase Science, Technology, Engineering, & Mathematics (STEM) literacy and inspire the next generation of engineers and scientists by providing effective web-based, standards-aligned, in-school and out-of-school learning and teaching resources through the lens of NASA.
      As a part of this work, NASA eClips professionally produces the Ask SME: Close-up With a NASA Subject Matter Expert video series to capture a glimpse of NASA SME’s personal interests and career journeys. Each video can be used to spark student interest and broaden their ideas of who the Science, Technology, Engineering, and Mathematics (STEM) workforce might include (everyone!) and the kinds of work they do.
      On September 19, 2024, NASA eClips released the most recent video in the Ask SME series, featuring Corey Twine from NASA’s Johnson Space Center. Twine is an Astronaut Strength and Conditioning Specialist who works with astronauts to keep them physically fit for work on Earth and while they are in space. He shares insights about how he helps the astronauts and what inspired him to pursue this career.
      Watch the Video
      NASA eClips is supported by NASA under cooperative agreement award number NNX16AB91A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      SME Corey Twine, Astronaut Strength & Conditioning Specialist Share








      Details
      Last Updated Oct 09, 2024 Editor NASA Science Editorial Team Location Johnson Space Center Related Terms
      Astronauts For Educators People of Johnson Science Activation Explore More
      3 min read Connected Learning Ecosystems: Educators Learning and Growing Together


      Article


      23 hours ago
      3 min read GLOBE Eclipse and Civil Air Patrol: An Astronomical Collaboration


      Article


      2 days ago
      5 min read Science Activation’s PLACES Team Facilitates Third Professional Learning Institute


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By European Space Agency
      Video: 00:11:35 Hera, ESA’s first planetary defence mission, is headed to space.
      Hera will fly to a unique target among the 1.3 million known asteroids of our Solar System – the first body to have had its orbit shifted by human action – to probe lingering unknowns related to its deflection.
      Hera is scheduled for launch on a SpaceX Falcon 9 rocket from Cape Canaveral Space Force Station in Florida, USA, today, Monday 7 October, at 16:52 CEST / 15:52 BST.
      View the full article
    • By NASA
      NASA astronaut Tracy C. Dyson works on a computer inside the International Space Station. Credit: NASA NASA astronaut Tracy C. Dyson will share details of her recent six-month mission aboard the International Space Station in a news conference at 11 a.m. EDT Friday, Oct. 4, at the agency’s Johnson Space Center in Houston.
      The news conference will air live on NASA+ and the agency’s website. Learn how to stream NASA content through a variety of platforms, including social media.
      Media interested in participating in person must contact the NASA Johnson newsroom no later than 5 p.m. Thursday, Oct. 3, at 281-483-5111 or jsccommu@mail.nasa.gov.
      Media wishing to participate by phone must contact the newsroom no later than two hours before the start of the event. NASA’s media accreditation policy is available online. To ask questions by phone, media must dial into the news conference no later than 10 minutes prior to the start of the call. Questions may also be submitted on social media by using #AskNASA.
      Spanning 184 days in space, Dyson’s third spaceflight covered 2,944 orbits of the Earth and a 78-million-mile journey as an Expedition 70/71 flight engineer. Dyson also conducted one spacewalk of 31 minutes, bringing her career total to 23 hours, 20 minutes on four spacewalks. Dyson returned to Earth on Sept. 23, as planned, along with her crewmates, Roscosmos cosmonauts Oleg Kononenko and Nikolai Chub.
      Dyson launched on March 23 and arrived at the station March 25 alongside Roscosmos cosmonaut Oleg Novitskiy and spaceflight participant Marina Vasilevskaya of Belarus. Novitskiy and Vasilevskaya were aboard the station for 12 days before returning home with NASA astronaut Loral O’Hara on April 6.
      While aboard the orbiting lab, Dyson conducted dozens of scientific and technology activities to benefit future exploration in space and life back on Earth. She remotely controlled a robot on Earth’s surface from a computer aboard the station and evaluated orbit-to-ground operations. She operated a 3D bioprinter to print cardiac tissue samples, which could advance technology for creating replacement organs and tissues for transplants on Earth.
      Dyson also participated in the crystallization of model proteins to evaluate the performance of hardware that could be used for pharmaceutical production and ran a program that uses student-designed software to control the station’s free-flying robots, inspiring the next generation of innovators.
      Learn more about space station activities by following @space_station and @ISS_Research on X, as well as the ISS Facebook, ISS Instagram, and the space station blog.
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      Share
      Details
      Last Updated Sep 30, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Humans in Space Astronauts Expedition 70 Expedition 71 International Space Station (ISS) ISS Research Tracy Caldwell Dyson View the full article
  • Check out these Videos

×
×
  • Create New...