Jump to content

The phenomenon 'Terminal Lucidity' the end-of-life transition

Recommended Posts

Just before someone dies, there is a phenomenon known as terminal lucidity, in that moments just before death, patients will have a moment of full mental clarity. 


It is often at this time they may talking about deceased loved ones in the room that have come to take them or reach up and smile to an invisible person as they take their last breaths.


View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 Min Read NASA’s Space Station Laser Comm Terminal Achieves First Link
      NASA’s ILLUMA-T payload at Goddard Space Flight Center fully tested and integrated prior to its delivery to Kennedy Space Center. Credits: NASA's Goddard Space Flight Center A NASA technology experiment on the International Space Station completed its first laser link with an in-orbit laser relay system on Dec. 5, 2023. Together, they complete NASA’s first two-way, end-to-end laser relay system.

      NASA’s LCRD (Laser Communications Relay Demonstration) and the new space station demonstration, ILLUMA-T (Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal), successfully exchanged data for the first time. LCRD and ILLUMA-T are demonstrating how a user mission, in this case the space station, can benefit from a laser communications relay located in geosynchronous orbit.
      NASA’s ILLUMA-T payload communicating with LCRD over laser signals.NASA / Dave Ryan Laser communications, also known known as optical communications, uses infrared light rather than traditional radio waves to send and receive signals. The tighter wavelength of infrared light allows spacecraft to pack more data into each transmission. Using laser communications greatly increases the efficiency of data transfer and can lead to a faster pace of scientific discoveries.
      The benefits of laser communications: more efficient, lighter systems, increased security, and more flexible ground systems.NASA / Dave Ryan On Nov. 9, NASA’s SpaceX 29th commercial resupply services mission launched cargo and new science experiments, including ILLUMA-T, to the space station. Following its arrival, the payload was installed onto the station’s Japanese Experiment Module-Exposed Facility.
      The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Thursday, Nov. 9, 2023, on the company’s 29th commercial resupply services mission for the agency to the International Space Station. Liftoff was at 8:28 p.m. EST. SpaceX ILLUMA-T and LCRD are a part of the NASA Space Communications and Navigation (SCaN) program’s effort to demonstrate how laser communications technologies can significantly benefit science and exploration missions.

      “ILLUMA-T’s first link with LCRD – known as first light – is the latest demonstration proving that laser communications is the future.” said Dr. Jason Mitchell, director of SCaN’s Advanced Communications and Navigation Technology division. “Laser communications will not only return more data from science missions, but could serve as NASA’s critical, two-way link to keep astronauts connected to Earth as they explore the Moon, Mars, and beyond.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA's ILLUMA-T payload achieved First Light with LCRD. In this video, Matt Magsamen explains the First Light milestone. Shortly after space station installation, operation engineers began conducting on-orbit testing to ensure the ILLUMA-T payload operated nominally. Now, it is communicating with LCRD, a relay launched in 2021 that has conducted over 300 experiment configurations to help NASA refine laser communications technologies. LCRD and ILLUMA-T are exchanging data at 1.2 gigabits-per-second.

      “We have demonstrated that we can overcome the technical challenges for successful space communications using laser communications. We are now performing operational demonstrations and experiments that will allow us to optimize our infusion of proven technology into our missions to maximize our exploration and science,” said David Israel, a NASA space communications and navigation architect.
      NASA’s Laser Communications Roadmap: Demonstrating laser communications capabilities on multiple missions in a variety of space regimes.NASA/Dave Ryan The LCRD experiments are conducted with industry, academia, and other government agencies. ILLUMA-T is now LCRD’s first in-space user experiment. NASA is still accepting experiments to work with LCRD. Interested parties should contact lcrd-experiments@nasa.onmicrosoft.com for more information.

      ILLUMA-T is funded by NASA’s Space Communications and Navigation (SCaN) program at NASA Headquarters in Washington. The payload is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Partners include the International Space Station program office at NASA’s Johnson Space Center in Houston and the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, Massachusetts.

      For more information: https://nasa.gov/scan

      About the Author
      Katherine Schauer
      Katherine Schauer is a writer for the Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, exploration activities, and more.
      Last Updated Dec 13, 2023 ContactKatherine Schauerkatherine.s.schauer@nasa.govLocationGoddard Space Flight Center Related Terms
      Laser Communications Relay General Space Communications & Navigation Program Technology Demonstration Explore More
      5 min read NASA’s First Two-way End-to-End Laser Communications Relay System
      Article 2 months ago 6 min read NASA’s Laser Communications Relay: A Year of Experimentation
      NASA’s first two-way laser relay system completed its first year of experiments on June 28…
      Article 6 months ago 4 min read NASA to Demonstrate Laser Communications from Space Station
      In 2023, NASA is sending a technology demonstration known as the Integrated LCRD Low Earth…
      Article 4 months ago View the full article
    • By USH
      The existence of elusive electrical discharges in the upper atmosphere, known by intriguing names like red sprites, blue jets, pixies, and elves, has been a subject of debate for years. 
      Astronaut Andreas Mogensen from the European Space Agency (ESA) recently documented rare thunder phenomena as part of the Thor-Davis experiment during his Huginn mission at the International Space Station. 
      Credit ESA - Learn more including video of the phenomenon
      Among his remarkable captures was a red sprite, a type of Transient Luminous Event (TLE), occurring above thunderclouds at an altitude ranging from 40 to 80 kilometers. Scientists estimate the red sprite's dimensions to be approximately 14 by 26 kilometers. 
      In a previous instance in 2015, Mogensen also successfully recorded kilometer-wide blue flashes at an altitude of around 18 kilometers, including a pulsating blue jet reaching up to 40 kilometers. 
      Credit ESA - Learn more including video of the phenomenon
      This atmospheric phenomenon remains poorly understood, constituting a mysterious aspect of our atmosphere. Electrical storms extending into the stratosphere not only contribute to the fascination of these events but also bear implications for our understanding of how the atmosphere shields us from radiation.View the full article
    • By NASA
      4 min read
      NASA Glenn Helps Military Service Members Transition to Civilian Life
      NASA Glenn Research Center’s Sydney Khamphoune (left) and Sam Yousef pose in front of U.S. and NASA flags.Credit: NASA/Sara Lowthian-Hanna John Glenn. Neil Armstrong. Buzz Aldrin. Jim Lovell. Guion Bluford. These iconic astronauts shared a commonality before they began their careers at NASA: They all served in the United States military.
      NASA values veterans and their commitment to serving America, and the agency seeks to hire veterans and military spouses, offer career development opportunities, and provide meaningful resources. Each NASA center has a resource group that connects veteran employees and their families with allies, creating a support network to help them through the unique challenges they face.
      “It’s a complete culture shock coming home from the military and having to relearn how to be a part of a civilian society,” said Samantha Yousef, Veterans Employee Resource Group chair at NASA’s Glenn Research Center in Cleveland.
      Yousef organizes veteran observance events, introduces various programs focused on veteran resources to the center, and meets with group members to discuss how to improve inclusivity and potential outreach activities.
      One initiative new to NASA Glenn is the Department of Defense SkillBridge program. SkillBridge gives transitioning service members an opportunity to gain civilian work experience through specific industry training, apprenticeships, or internships during their last 180 days of service.
      “Many soldiers, sailors, and airmen enter the military directly out of high school or college with little to no workforce experience,” Yousef said. “They learn the importance of teamwork, leadership, and dedication to the mission at a young age. However, when it’s time to separate from the military, they’re sometimes lost in transition.”
      Sydney Khamphoune is Glenn’s most recent SkillBridge fellow. Khamphoune joined the Navy after high school, and because she wanted to learn more about each job on her ship, she was classified as “undesignated.” 
      “Undesignated means you’re subject to the needs of the Navy, and you go wherever they need you,” Khamphoune said. “They put me into the Deck Department, so I was the person painting the side of the ship or pulling the ship in with the lines when we came into port.”
      Stationed on the USS Oak Hill in Norfolk, Virginia, Khamphoune spent much of her time sweeping water off the deck of the ship and finishing work late into the night, even after her crewmates went to bed. After a year in the Deck Department, she had the opportunity to choose a new role and became a personnel specialist.
      Like a human resources specialist in the civilian world, Khamphoune provided counseling related to Navy jobs and assisted with personnel transfers, separations, and retirements. She served in Virginia for five years before coming to Ohio to serve at the Department of Defense’s Defense Finance and Accounting Service.
      She served in the Navy for nine years before deciding it was time to separate. In her Transition Assistance Program — a program that offers support for service members separating from the military — she learned about the SkillBridge program. 
      Sydney Khamphoune is NASA Glenn Research Center’s most recent SkillBridge fellow.Credit: NASA/Sara Lowthian-Hanna. “I saw NASA on the list and immediately applied,” Khamphoune said. “I wasn’t going to apply anywhere else. It was NASA or bust.”
      Khamphoune was thrilled to receive a phone call ­— on her birthday, no less ­— from NASA assigning her to Glenn’s Procurement Office. In this role, she assists contracting officers, including those that work on contracts for construction or janitorial services, with their daily tasks.
      “I’m learning so much. I came in with no knowledge, and now I can help the contracting officers,” Khamphoune said. “One contracting officer had a massive list of obligations to complete, and I offered to help. He trained me for two days, and then I knocked out the whole list.”
      Khamphoune still thinks back to when she first enlisted in the Navy and appreciates where that journey has taken her.
      “I never imagined being at NASA right now, and since I’ve been here, I’ve gained a lot more confidence,” Khamphoune said. “The environment they’re creating here is great. It doesn’t matter if you’re new or have been here for a while — your opinion has value, and you can bring something new to the table. I feel like this experience is precious and personal because I’m finding out who I am in a different way.”
      Learn more about SkillBridge and the many routes to a NASA internship.
      Explore More
      5 min read Peter Griffith: Diving Into Carbon Cycle Science
      Dr. Peter Griffith serves as the director of NASA’s Carbon Cycle and Ecosystems Office at…
      Article 20 hours ago 4 min read NASA Project Manager Helps Makes Impact in Southeast Asia with SERVIR
      Article 1 day ago 2 min read Native Earth, Native Sky CRS-29 Payload
      Choctaw Nation of Oklahoma (CNO) and NASA’s Science Activation Program, Native Earth | Native Sky…
      Article 6 days ago View the full article
    • By USH
      On October 23, 2023, an unusual event unfolded in the skies above Northwestern and Eastwestern Ohio, leaving residents perplexed. 

      Initially, attention was drawn to a mysterious white object descending through the daytime sky above Eastwestern Ohio which was obviously not a conventional aircraft, helicopter, drone, or meteor, the orb-like nature of this white object fueled speculation. 
      Soon after, a second swiftly moving object emerged above Northwestern Ohio, changing direction which means the object is under intelligent control. Adding to the intrigue, a sudden and thunderous sonic boom echoed through the air, further intensifying the mystery. 
      The first white object remains unexplained. Regarding the second unidentified entity, MrMBB333 proposed a hypothesis involving a potential crash into the Earth. However, alternative theories circulated, with some speculating that the resounding sonic boom might have been the result of a fighter jet breaking the sound barrier. Nonetheless, this theory lacks conclusive evidence. 
      Whatever these two objects were, their presence in the sky constituted a highly uncommon occurrence, capturing the attention of onlookers on that October day.
        View the full article
    • By NASA
      2 min read
      NASA Concludes Significant Technical Challenge: In-Time Terminal Area Risk Management
      NASA’s System-Wide Safety project is working towards achieving NASA’s vision for safe, efficient skies.Busakorn Pongparnit Operations within the National Airspace System continue to grow in scale and complexity. As a result, causal factors of risks and hazards are increasingly complex and drive the need to transform the way we conduct risk management and safety assurance.
      NASA’s System-Wide Safety (SWS) project recently commemorated the completion of a major step towards that transformation with an engaging hybrid event reflecting on the completion of its Technical Challenge 1 (TC-1): In-Time Terminal Area Risk Management.
      The event highlighted key takeaways, provided technology demonstrations, and engaged stakeholders and partners in conversations around the myriad of capabilities and opportunities made possible by the tools, techniques, and processes developed under the technical challenge.
      Speakers from NASA, the Federal Aviation Administration (FAA), airlines, and the aviation industry at large discussed how to best leverage TC-1 capabilities as the safety foundation of this new era of commercial aviation.
      New technologies developed in TC-1 identify emerging risks and monitor safety margins before an accident occurs – not after. Powered by prognostic and predictive risk assessment algorithms and human factors research, TC-1 work will both improve today’s safety management systems and help us shape future operational systems.
      Nikunj Oza, subproject manager for TC-1, speaks at the closeout event.NASA Through TC-1, NASA and its partners have developed and demonstrated:
      Methods to improve risk management and safety assurance processes by proactively identifying risks and causal factors before an accident/incident occurs. Integrated risk assessment capabilities to monitor and assess terminal area operations based on advanced data analytics methods and predictive model development. Machine Learning Analytics Tools, in collaboration with our partners, that identify and characterize operational risks, monitor, and integrate data, evaluate risk mitigation strategies, and determine causal and contributing factors. TC-1’s findings are the bedrock of the rest of the SWS technical challenges. They pave the way for a new technical challenge (TC-6) that seeks to expand on the work completed thus far and address the call to action set forth by the FAA to address safety challenges facing the transforming aviation industry.
      SWS extends sincere appreciation to TC-1’s subproject managers, Nikunj Oza and Chad Stephens, and to Abigail Glenn-Chase for coordinating such an impactful event.
      A recording of the event is available below.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      3 min read Meet System-Wide Safety’s Hannah Walsh
      Hannah Walsh, Computer Engineer
      Article 5 months ago 4 min read From the Streets to the Skies: Terry Morris Using NASA’s Vision to Transform Humanity Towards the Future
      Abused. Neglected. Abandoned. Terry Morris was dealt a horrible set of cards in life, but…
      Article 8 months ago 1 min read System-Wide Safety Hosts Panel at Crosscutting Meeting
      Article 8 months ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Solar System Exploration
      Overview Since 1998, NASA’s Solar System Exploration hub has served as a real-time, living encyclopedia of the scientific exploration of…
      Explore NASA’s History
      Last Updated Oct 06, 2023 Editor Lillian Gipson Contact Jim Bankejim.banke@nasa.gov Related Terms
      System-Wide Safety View the full article
  • Check out these Videos

  • Create New...