Jump to content

A Commercial Resupply Mission to the Space Station on This Week @NASA – August 13, 2021


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This image shows an aviation version of a smartphone navigation app that makes suggestions for an aircraft to fly an alternate, more efficient route. The new trajectories are based on information available from NASA’s Digital Information Platform and processed by the Collaborative Departure Digital Rerouting tool.NASA Just like your smartphone navigation app can instantly analyze information from many sources to suggest the best route to follow, a NASA-developed resource is now making data available to help the aviation industry do the same thing.
      To assist air traffic managers in keeping airplanes moving efficiently through the skies, information about weather, potential delays, and more is being gathered and processed to support decision making tools for a variety of aviation applications.
      Appropriately named the Digital Information Platform (DIP), this living database hosts key data gathered by flight participants such as airlines or drone operators. It will help power additional tools that, among other benefits, can save you travel time.
      Ultimately, the aviation industry… and even the flying public, will benefit from what we develop.
      Swati Saxena
      NASA Aerospace Engineer
      “Through DIP we’re also demonstrating how to deliver digital services for aviation users via a modern cloud-based, service-oriented architecture,” said Swati Saxena, DIP project manager at NASA’s Ames Research Center in California.
      The intent is not to compete with others. Instead, the hope is that industry will see DIP as a reference they can use in developing and implementing their own platforms and digital services.
      “Ultimately, the aviation industry – the Federal Aviation Administration, commercial airlines, flight operators, and even the flying public – will benefit from what we develop,” Saxena said.
      The platform and digital services have even more benefits than just saving some time on a journey.
      For example, NASA recently collaborated with airlines to demonstrate a traffic management tool that improved traffic flow at select airports, saving thousands of pounds of jet fuel and significantly reducing carbon emissions.
      Now, much of the data gathered in collaboration with airlines and integrated on the platform is publicly available. Users who qualify can create a guest account and access DIP data at a new website created by the project.
      It’s all part of NASA’s vision for 21st century aviation involving revolutionary next-generation future airspace and safety tools.
      Managing Future Air Traffic
      During the 2030s and beyond, the skies above the United States are expected to become much busier.
      Facing this rising demand, the current National Airspace System – the network of U.S. aviation infrastructure including airports, air navigation facilities, and communications – will be challenged to keep up. DIP represents a key piece of solving that challenge.
      NASA’s vision for future airspace and safety involves new technology to create a highly automated, safe, and scalable environment.
      What this vision looks like is a flight environment where many types of vehicles and their pilots, as well as air traffic managers, use state-of-the-art automated tools and systems that provide highly detailed and curated information.
      These tools leverage new capabilities like machine learning and artificial intelligence to streamline efficiency and handle the increase in traffic expected in the coming decades.
      Digital Services Ecosystem in Action
      To begin implementing this new vision, our aeronautical innovators are evaluating their platform, DIP, and services at several airports in Texas. This initial stage is a building block for larger such demonstrations in the future.
      “These digital services are being used in the live operational environment by our airline partners to improve efficiency of the current airspace operations,” Saxena said. “The tools are currently in use in the Dallas/Fort Worth area and will be deployed in the Houston airspace in 2025.”
      The results from these digital tools are already making a difference.
      Proven Air Traffic Results
      During 2022, a NASA machine learning-based tool named Collaborative Digital Departure Rerouting, designed to improve the flow of air traffic and prevent flight delays, saved more than 24,000 lbs. (10,886 kg.) of fuel by streamlining air traffic in the Dallas area.
      If such tools were used across the entire country, the improvements made in efficiency, safety, and sustainability would make a notable difference to the flying public and industry.
      “Continued agreements with airlines and the aviation industry led to the creation and expansion of this partnership ecosystem,” Saxena said. “There have been benefits across the board.”
      DIP was developed under NASA’s Airspace Operations and Safety Program.
      Learn about NASA’s Collaborative Digital Departure Rerouting tool and how it uses information from the Digital Information Platform to provide airlines with routing options similar to how drivers navigate using cellphone apps. About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      2 min read NASA Prepares for Air Taxi Passenger Comfort Studies
      Article 2 weeks ago 2 min read Hypersonic Technology Project Overview
      Article 3 weeks ago 2 min read Hypersonics Technical Challenges
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Jul 12, 2024 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Air Traffic Management – Exploration Air Traffic Solutions Airspace Operations and Safety Program View the full article
    • By NASA
      Apollo astronaut Buzz Aldrin poses for a photograph beside the deployed United States flag during an Apollo 11 moonwalk on July 20, 1969. The Lunar Module is on the left, and the footprints of the astronauts are clearly visible in the soil of the moon.Credit: NASA As the agency explores more of the Moon than ever before under the Artemis campaign, NASA will celebrate the 55th anniversary of the first astronauts landing on the Moon through a variety of in-person, virtual, and engagement activities nationwide between Monday, July 15, and Thursday, July 25.
      Events will honor America’s vision and technology that enabled the Apollo 11 crewed lunar landing on July 20, 1969, as well as Apollo-era inventions and techniques that spread into public life, many of which are still in use today. Activities also will highlight NASA’s Artemis campaign, which includes landing the first woman, first person of color, and first international astronaut on the Moon, inspiring great achievements, exploration, and scientific discovery for the benefit of all.
      NASA’s subject matter experts are available for a limited number of interviews about the anniversary. To request an interview virtually or in person, contact Jessica Taveau in the newsroom: jessica.c.taveau@nasa.gov.
      During the week of July 15, the agency also will share the iconic bootprint image and the significance of Apollo 11 to NASA’s mission, as well as use the #Apollo11 hashtag, across its digital platforms online.
      Additional activities from NASA include:
      Monday, July 15 and Tuesday, July 16, NASA’s Michoud Assembly Facility in New Orleans, Louisiana: NASA will host the rollout of the agency’s Artemis II SLS (Space Launch System) core stage. Friday, July 19, NASA’s Johnson Space Center in Houston: In a dedication and ribbon cutting, the center will name its building 12 the ‘Dorothy Vaughan Center in Honor of the Women of Apollo.’ Vaughan was a mathematician, computer programmer, and NASA’s first Black manager. Sunday, July 21, NASA’s Goddard Space Flight Center in Greenbelt, Maryland: NASA Goddard will host a model rocket contest conducted by the National Association of Rocketry Headquarters Astro Modeling Section. This free contest is open to all model rocketeers and the public.  Other activities include:
      Tuesday, July 16 through Wednesday, July 24, Space Center Houston: The center will host pop-up science labs, mission briefings, special tram tours that feature the Mission Control Center at NASA Johnson, and more. Friday, July 19 through Saturday, July 20, National Cathedral in Washington: The cathedral will host a festival marking the 50th anniversary of its Space Window, which contains a piece of lunar rock that was donated by NASA and the crew of Apollo 11. Thursday, July 25, San Diego Comic-Con: NASA representatives will participate in a panel entitled ‘Exploring the Moon: the Artemis Generation.’ Panelists are:Stan Love, NASA astronaut A.C. Charania, NASA chief technologist Dionne Hernandez-Lugo, NASA’s Gateway Program Jackelynne Silva-Martinez, NASA Human Health and Performance For more details about NASA’s Apollo Program, please visit:
      https://www.nasa.gov/the-apollo-program
      -end-
      Cheryl Warner / Jessica Taveau
      Headquarters, Washington
      202-356-1600
      cheryl.m.warner@nasa.gov / jessica.c.taveau@nasa.gov
      Share
      Details
      Last Updated Jul 12, 2024 LocationNASA Headquarters Related Terms
      Apollo 11 Artemis View the full article
    • By Space Force
      Air Marshal Paul Godfrey took the position June 17 and will serve the U.S. Space Force as assistant chief of Space Operations for Future Concepts and Partnerships after three years as the first commander of the U.K. Space Command.

      View the full article
    • By European Space Agency
      Week in images: 08-12 July 2024
      Discover our week through the lens
      View the full article
    • By NASA
      On July 8, 1994, space shuttle Columbia took to the skies on its 17th trip into space, on the second International Microgravity Laboratory (IML-2) mission. Six space agencies sponsored 82 life and microgravity science experiments. The seven-person crew consisted of Commander Robert D. Cabana, Pilot James D. Halsell, Payload Commander Richard J. Hieb, Mission Specialists Carl E. Walz, Leroy Chiao, and Donald A. Thomas, and Payload Specialist Chiaki Mukai representing the National Space Development Agency (NASDA) of Japan, now the Japan Aerospace Exploration Agency. Jean-Jacques H. Favier of the French space agency CNES served as a backup payload specialist. During their then-record setting 15-day shuttle flight, the international team of astronauts successfully completed the science program. They returned to earth on July 23.

      Left: The STS-65 crew patch. Middle: Official photo of the STS-65 crew of Richard J. Hieb, seated left, Robert D. Cabana, and Donald A. Thomas; Leroy Chiao, standing left, James D. Halsell, Chiaki Mukai of Japan, and Carl E. Walz. Right: The payload patch for the International Microgravity Laboratory-2.
      In August 1973, NASA and the European Space Research Organization, reorganized as the European Space Agency (ESA) in 1975, agreed to build a reusable laboratory called Spacelab to fly in the space shuttle’s cargo bay. As part of the agreement, ESA built two pressurized modules in addition to other supporting hardware. First flying on STS-9 in 1983, the 18-foot-long pressurized Spacelab module made its 10th flight on STS-65. In September 1992 NASA named Hieb as the IML-2 payload commander and Mukai and Favier as prime and backup payload specialists, respectively, adding Chiao and Thomas as mission specialists in October 1992, finally designating Cabana, Halsell, and Walz as the orbiter crew in August 1993. For Cabana and Hieb, both selected as astronauts in 1985, STS-65 marked their third spaceflight.  NASA selected Halsell, Walz, Chiao, and Thomas in 1990, in the class nicknamed The Hairballs. Walz would make his second flight, with the other three making their first. NASDA selected Mukai in 1985 and she holds the distinction as the first Japanese woman in space. Chiao and Mukai as part of the STS-65 crew marked the first time that two Asians flew on the shuttle at the same time, and with Kazakh cosmonaut Talgat A. Musbayev aboard Mir, the first time that three people of Asian origins flew in space at the same time.

      Left: The STS-65 crew during preflight training at NASA’s Johnson Space Center in Houston. Right: Technicians at NASA’s Kennedy Space Center in Florida prepare the Spacelab module for the STS-65 mission.
      Columbia returned to NASA’s Kennedy Space Center (KSC) in Florida following its previous flight, STS-62, in March 1994. Technicians in KSC’s Orbiter Processing Facility (OPF) serviced the orbiter, removed the previous payload, and installed the Spacelab module in the payload bay. Following a successful leak check of the Spacelab module, rollover of Columbia from the OPF to the Vehicle Assembly Building (VAB) took place on June 8, where workers mated it with an external tank (ET) and two solid rocket boosters (SRBs). Following integrated testing, the stack rolled out to Launch Pad 39A seven days later. The crew participated in the Terminal Countdown Demonstration Test on June 22.

      Liftoff of space shuttle Columbia on STS-65 carrying the second International Microgravity Laboratory.
      On July 8, 1994, precisely on time, Columbia thundered off KSC’s Launch Pad 39A to begin the STS-65 mission. For the first time in shuttle history, a video camera recorded the liftoff from the orbiter’s flight deck, showing the vibrations during the first two minutes while the SRBs fired, smoothing out once the shuttle main engines took over. Mounted inside Columbia’s payload bay, the Spacelab 18-foot-long module provided a shirt-sleeve environment for the astronauts to conduct the scientific experiments. As during many Spacelab missions, the STS-65 crew carried out science operations 24-hours a day, divided into two teams – the red shift comprised Cabana, Halsell, Hieb, and Mukai, while Chiao, Thomas, and Walz made up the blue shift.

      Left: Still image from video recorded on the shuttle’s flight deck during powered ascent. Middle: James D. Halsell, left, and Carl E. Walz moments after Columbia reached orbit. Right: View of the Spacelab module in the shuttle’s payload bay.

      Left: Richard J. Hieb opens the hatch from the airlock to the tunnel leading to the Spacelab module. Middle: Hieb and Chiaki Mukai begin activating Spacelab and its experiments. Right: The view from the tunnel showing astronauts at work in the Spacelab module.
      After reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. Shortly after, Hieb opened the hatch to the transfer tunnel and translated through it to enter the Spacelab module for the first time. He and Mukai activated the module and turned on the first experiments. For the next 14 days, the astronauts worked round the clock, with Cabana, Halsell, and Walz managing the shuttle’s systems while Hieb, Chiao, Thomas, and Mukai conducted the bulk of the research. The astronauts commemorated the 25th anniversary of the Apollo 11 launch on July 16 and the Moon landing four days later, recalling that their spacecraft and the Command Module shared the name Columbia.

      Left: Chiaki Mukai of the National Space Development Agency of Japan, now the Japan Aerospace Exploration Agency, talks to students in Japan using the shuttle’s amateur radio. Middle: Richard J. Hieb, left, and Robert D. Cabana take an air sample from an experiment. Right: Hieb in the Lower Body Negative Pressure device.

      Left: Donald A. Thomas, left, Leroy Chiao, Richard J. Hieb, and Chiaki Mukai at work in the Spacelab module. Middle: Chiao, left, and Thomas work on the Biorack instruments. Right: Goldfish swim in the Aquatic Animal Experiment Unit.

      Left: Robert D. Cabana uses the shuttle’s amateur radio. Middle: Leroy Chiao looks out at the Earth. Right: Carl E. Walz working on the shuttle’s flight deck.

      Left: Carl E. Walz flies through the Spacelab module. Middle: Donald A. Thomas gives two thumbs up for the crew’s performance during the mission. Right: Thomas, left, Walz, and Leroy Chiao pay tribute to Apollo 11 on the 25th anniversary of the Moon landing mission.

      Left: The first time two Asians fly on the shuttle at the same time – Chiaki Mukai, left, of the National Space Development Agency of Japan, now the Japan Aerospace Exploration Agency, left, and NASA astronaut Leroy Chiao. Middle: Donald A. Thomas, left, James D. Halsell, Carl E. Walz, and Chiao, all selected in 1990 as part of astronaut class 13, nicknamed The Hairballs. Right: Inflight photograph of the STS-65 crew.

      A selection of the STS-65 crew Earth observation photographs. Left: Rio de Janeiro. Middle: Barrier islands in Papua New Guinea. Right: Hurricane Emilia in the central Pacific Ocean.

      Left: James D. Halsell uses the laptop-based PILOT to train for the entry and landing. Middle: The astronauts close Columbia’s payload bay doors prior to entry. Right: Flash of plasma seen through Columbia’s overhead window during reentry.
      At the end of 13 days, the astronauts finished the last of the experiments and deactivated the Spacelab module. Managers waved off the planned landing on July 22 due to cloudy weather at KSC. On July 23, the astronauts closed the hatch to the Spacelab module for the final time, closed Columbia’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats for entry and landing. Cabana piloted Columbia to a smooth landing on KSC’s Shuttle Landing Facility, completing 236 orbits around the Earth in 14 days, 17 hours, and 55 minutes, at the time the longest shuttle flight. Mukai set a then-record for the longest single flight by a woman. In October 1994, Columbia returned to its manufacturer, Rockwell International in Palmdale, California, for scheduled modification and refurbishment before its next mission, STS-73, in October 1995.

      Left: Robert D. Cabana pilots Columbia during the final approach to NASA’s Kennedy Space Center (KSC) in Florida, with the Vehicle Assembly Building visible through the window. Middle: Columbia touches down on KSC’s Shuttle Landing Facility to end the STS-65 mission. Right: Donald A. Thomas, left, and Cabana give a thumbs up after the successful mission.
      The two Spacelab modules flew a total of 16 times, the last one during the STS-90 Neurolab mission in April 1998. Visitors can view the module that flew on STS-65 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia. The other module resides at the Airbus Defence and Space plant in Bremen, Germany, and not accessible to the public.

      The Spacelab long module that flew on STS-65 and eight other missions on display at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia.
      Enjoy the crew narrate a video about the STS-65 mission. Read Cabana’s and Chiao’s recollections of the STS-65 mission in their oral histories with the JSC History Office.
      Explore More
      11 min read Fourth of July Holidays in Space
      Article 1 week ago 9 min read 40 Years Ago: STS-41D – First Space Shuttle Launch Pad Abort
      Article 2 weeks ago 5 min read The 1998 Florida Firestorm and NASA’s Kennedy Space Center
      Article 2 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...