Jump to content

Dedicating The Neil A. Armstrong Facility for an American Hero


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 Min Read July’s Night Sky Notes: A Hero, a Crown, and Possibly a Nova!
      Like shiny flakes sparkling in a snow globe, over 100,000 stars whirl within the globular cluster M13, one of the brightest star clusters visible from the Northern Hemisphere. Located 25,000 light-years from Earth with an apparent magnitude of 5.8, this glittering metropolis of stars in the constellation Hercules can be spotted with a pair of binoculars most easily in July. Credits:
      NASA by Vivan White of the Astronomical Society of the Pacific
      High in the summer sky, the constellation Hercules acts as a centerpiece for late-night stargazers. At the center of Hercules is the “Keystone,” a near-perfect square shape between the bright stars Vega and Arcturus that is easy to recognize and can serve as a guidepost for some amazing sights. While not the brightest stars, the shape of the hero’s torso, like a smaller Orion, is nearly directly overhead after sunset. Along the edge of this square, you can find a most magnificent jewel – the Great Globular Cluster of Hercules, also known as Messier 13.
      Look up after sunset during summer months to find Hercules! Scan between Vega and Arcturus, near the distinct pattern of Corona Borealis. Once you find its stars, use binoculars or a telescope to hunt down the globular clusters M13 (and a smaller globular cluster M92). If you enjoy your views of these globular clusters, you’re in luck – look for another great globular, M3, near the constellation Boötes. Credit: Stellarium Globular clusters are a tight ball of very old stars, closer together than stars near us. These clusters orbit the center of our Milky Way like tight swarms of bees. One of the most famous short stories, Nightfall by Isaac Asimov, imagines a civilization living on a planet within one of these star clusters. They are surrounded by so many stars so near that it is always daytime except for once every millennium, when a special alignment (including a solar eclipse) occurs, plunging their planet into darkness momentarily. The sudden night reveals so many stars that it drives the inhabitants mad.
      Back here on our home planet Earth, we are lucky enough to experience skies full of stars, a beautiful Moon, and regular eclipses. On a clear night this summer, take time to look up into the Keystone of Hercules and follow this sky chart to the Great Globular Cluster of Hercules. A pair of binoculars will show a faint, fuzzy patch, while a small telescope will resolve some of the stars in this globular cluster.
      A red giant star and white dwarf orbit each other in this animation of a nova similar to T Coronae Borealis. The red giant is a large sphere in shades of red, orange, and white, with the side facing the white dwarf the lightest shades. The white dwarf is hidden in a bright glow of white and yellows, which represent an accretion disk around the star. A stream of material, shown as a diffuse cloud of red, flows from the red giant to the white dwarf. When the red giant moves behind the white dwarf, a nova explosion on the white dwarf ignites, creating a ball of ejected nova material shown in pale orange. After the fog of material clears, a small white spot remains, indicating that the white dwarf has survived the explosion. NASA/Goddard Space Flight Center Bonus! Between Hercules and the ice-cream-cone-shaped Boötes constellation, you’ll find the small constellation Corona Borealis, shaped like the letter “C.” Astronomers around the world are watching T Coronae Borealis, also known as the “Blaze Star” in this constellation closely because it is predicted to go nova sometime this summer. There are only 5 known nova stars in the whole galaxy. It is a rare observable event and you can take part in the fun! The Astronomical League has issued a Special Observing Challenge that anyone can participate in. Just make a sketch of the constellation now (you won’t be able to see the nova) and then make another sketch once it goes nova.
      Tune into our mid-month article on the Night Sky Network page, as we prepare for the Perseids! Keep looking up!
      View the full article
    • By NASA
      Credits: NASA NASA has selected the University of Hawaii in Honolulu to maintain and operate the agency’s Infrared Telescope Facility (IRTF) on Mauna Kea in Hilo, Hawaii.
      The Management and Operations of NASA’s IRTF is a hybrid firm-fixed-price contract with an indefinite-delivery/indefinite-quantity provision. The contract has a maximum potential value of approximately $85.5 million, with a base period of performance from Monday, July 1 to June 30, 2025. Nine optional periods, if exercised, would extend the contract through Dec. 31, 2033.
      Under this contract, the University of Hawaii will provide maintenance and operation services for NASA at the telescope facility. The university will also develop and implement an operations strategy so that the facility can be used by the scientific community through peer-reviewed competition to assist NASA in achieving its goals in scientific discovery, mission support, and planetary defense.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Share
      Details
      Last Updated Jun 28, 2024 LocationNASA Headquarters Related Terms
      NASA Centers & Facilities Science & Research View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A Terrier-Improved Orion sounding rocket carrying students experiments for the RockOn! mission successfully launched from NASA’s Wallops Flight Facility Aug. 17, 2023 at 6 a.m. EDT.NASA/ Kyle Hoppes More than 50 student and faculty teams are sending experiments into space as part of NASA’s RockOn and RockSat-C student flight programs. The annual student mission, “RockOn,” is scheduled to launch from Wallops Island, Virginia, on a Terrier-Improved Orion sounding rocket Thursday, June 20, with a launch window that opens at 5:30 a.m. EDT.
      An introduction to rocketry for college students
      The RockOn workshop is an introductory flight opportunity for community college and university students. RockOn participants spend a week at NASA’s Wallops Flight Facility, where they are guided through the process of building and launching an experiment aboard a sounding rocket.
      “RockOn provides students and faculty with authentic, hands-on experiences tied to an actual launch into space from a NASA facility,” said Chris Koehler, on contract with NASA as RockOn’s principal investigator. “These experiences are instrumental in the creation of our next STEM workforce.”
      RockOn student experiments are placed into canisters to be integrated into the payload.NASA/ Madison Olson Unique & advanced experiments
      In addition to the RockOn workshop experiments, the rocket will carry student team experiments from six different institutions as part of the RockSat-C program. The RockSat-C experiments are unique to each institution and were created off site.
      RockSat-C “has been an incredible introduction into the world of NASA and how flight missions are built from start to finish,” said TJ Tomaszewski, student lead for the University of Delaware. “The project started as just a flicker of an idea in students’ minds. After countless hours of design, redesign, and coffee, the fact that we finished an experiment capable of going to space and capable of conducting valuable scientific research makes me so proud of my team and so excited for what’s possible next. Everybody dreams about space, and the fact that we’re going to launch still doesn’t feel real.”
      Students participating in the 2024 RockSat-C program were able to see the RockOn rocket in the testing facility at Wallops Flight Facility.NASA/ Berit Bland RockSat-C participants include:
      Temple University, Philadelphia Experiments will utilize X-ray spectrometry, muon detection, and magnetometry to explore the interplay among cosmic phenomena, such as X-rays, cosmic muons, and Earth’s magnetic field, while also quantifying atmospheric methane levels as a function of altitude.
      Southeastern Louisiana University, Hammond The ION experiment aims to measure the plasma density in the ionosphere. This will be achieved by detecting the upper hybrid resonant frequency using an impedance probe mounted on the outside of the rocket and comparing the results to theoretical models. The secondary experiment, known as the ACC experiment, aims to record the rocket’s re-entry dynamics and measure acceleration in the x, y, and z directions.
      Old Dominion University, Norfolk, Virginia The Monarch3D team will redesign and improve upon a pre-existing experiment from the previous year’s team that will print in suborbital space. This project uses a custom-built 3D printer made by students at Old Dominion.
      University of Delaware, Newark Project UDIP-4 will measure the density and temperature of ionospheric electrons as a function of altitude and compare the quality of measurements obtained from different grounding methods. Additionally, the project focuses on developing and testing new CubeSat hardware in preparation for an orbital CubeSat mission named DAPPEr.
      Stevens Institute of Technology, Hoboken, New Jersey The Atmospheric Inert Gas Retrieval project will develop a payload capable of demonstrating supersonic sample collection at predetermined altitudes and investigating the noble gas fractionation and contamination of the acquired samples. In addition, their payload will test the performance of inexpensive vibration damping materials by recording and isolating launch vibrations using 3D-printed components.
      Cubes in Space, Virginia Beach, Virginia The Cubes in Space (CiS) project provides students aged 11 to 18 with a unique opportunity to conduct scientific and engineering experiments in space. CiS gives students hands-on experience and a deeper understanding of scientific and engineering principles, preparing them for more complex STEM studies and research in the future. Students develop and design their unique experiments to fit into clear, rigid plastic payload cubes, each about 1.5 inches on a side. Up to 80 of these unique student experiments are integrated into the nose cone of the rocket.
      Approximately 80 small cubes will be launched as part of the RockOn sounding rocket mission.Courtesy Cubes in Space/Jorge Salazar; used with permission Watch the launch
      The launch window for the mission is 5:30-9:30 a.m. EDT, Thursday June 20, with a backup day of June 21. The Wallops Visitor Center’s launch viewing area will open at 4:30 a.m. A livestream of the mission will begin 15 minutes before launch on the Wallops YouTube channel. Launch updates also are available via the Wallops Facebook page.
      These circular areas show where and when people may see the rocket launch in the sky, depending on cloud cover. The different colored sections indicate the time (in seconds) after liftoff that the sounding rocket may be visible.NASA/ Christian Billie NASA’s Sounding Rocket Program is conducted at the agency’s Wallops Flight Facility, which is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA’s Heliophysics Division manages the sounding rocket program for the agency.

      Share
      Details
      Last Updated Jun 14, 2024 EditorAmy BarraContactAmy Barraamy.l.barra@nasa.govLocationWallops Flight Facility Related Terms
      Wallops Flight Facility For Colleges & Universities Goddard Space Flight Center Heliophysics Division Sounding Rockets Sounding Rockets Program STEM Engagement at NASA Explore More
      4 min read Double Header: NASA Sounding Rockets to Launch Student Experiments
      NASA's Wallops Flight Facility is scheduled to launch two sounding rockets carrying student developed experiments…
      Article 10 months ago 3 min read Sounding Rocket Takes a Second Look at the Sun
      Article 6 years ago 4 min read Big Science Drives Wallops’ Upgrades for NASA Suborbital Missions
      Article 1 month ago View the full article
    • By NASA
      “I went back to school in 2016. So I had two kids that were three and five, and I was working full time, and I was doing the master’s program, taking two classes online. It took two years to get it done, and it was like a balancing act, and my kids had to watch the sacrifice in a sense. There were times when I had to take tests, and I was like, ‘OK, you’ve got to sit in the living room with your dad, or you’ve got to go to grandma’s house because I’ve got to take this test.’
      “It was tough, but I had to get it done to show my kids that anything is possible. Things don’t get handed to you. You’ve got to work for them.
      “And so, I made sure that when I graduated in August of 2018, we drove to the school, which is six hours away, so they could watch me walk across the stage and see, you know, the sacrifices I made so that we could be here. And so for them, it’s like – my little one, that’s what she wants to grow up to do: work for NASA and do safety like me. It’s cool.
      “To them, I think it’s impactful, so they know that if you commit yourself and put the effort and work into it, you can do whatever you put your mind to. Both of my kids watched it, and they’re both in the STEM program at their school because they have a passion for math and science and want to try to make a difference in their own capacity.”
      – Thu Nguyen, Facility Systems Safety Engineer and Fall Protection Program Administrator, NASA’s Johnson Space Center
      Image Credit: NASA/Robert Markowitz
      Interviewer: NASA/Tahira Allen
      Check out some of our other Faces of NASA. 
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      John Bodylski holds a balsa wood model of his proposed aircraft that could be an atmospheric probe. Directly in front of him is a fully assembled version of the aircraft and a large section of a second prototype at NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Steve Freeman NASA researchers are looking at the possibility of using a wingless, unpowered aircraft design from the 1960s to gather atmospheric data on other planets – doing the same work as small satellites but potentially better and more economically.
      John Bodylski, a principal investigator at NASA’s Armstrong Flight Research Center in Edwards, California, hypothesized a lifting body aircraft design NASA tested decades ago could meet the requirements for an atmospheric probe that can collect measurements of giant planets, like Uranus. The design relies on the aircraft’s shape for lift, rather than wings.
      The lifting body aircraft on Rogers Dry Lake, near what is now NASA’s Armstrong Flight Research Center in Edwards, California, include, from left, the X-24A, the M2-F3, and the HL-10.NASA Bodylski submitted his idea and earned a NASA Armstrong Center Innovation Fund award to write a technical paper explaining the concept and design. The award also supports construction of models to help people conceptualize his atmospheric probe. Enter the NASA Armstrong Dale Reed Subscale Flight Research Laboratory.
      Robert “Red” Jensen and Justin Hall, two of the lab’s designers, technicians, and pilots, brought Bodylski’s designs to life. Jensen and Hall created a mold, then layered in carbon-fiber and foam that cured for eight hours under vacuum. The parts were removed from the molds, refined, and later joined together.
      Justin Hall, left, and Robert “Red” Jensen, at NASA’s Armstrong Flight Research Center in Edwards, California, add layers of carbon fiber and foam in a mold. Another few layers will be added and then it will be cured about eight hours under vacuum. The parts were later removed from molds, refined, and joined for an aircraft that is designed to be an atmospheric probe.NASA/Steve Freeman Justin Hall, left, and Robert “Red” Jensen work to eliminate the air around an aircraft mold where it will cure for eight hours. The subscale aircraft development at NASA’s Armstrong Flight Research Center in Edwards, California, may result in an atmospheric probe.NASA/Steve Freeman The first of the two lifting body aircraft, both of which are 27 1/2 inches long, and 24 inches wide, is complete and offers a first look at the concept. The second aircraft is almost ready and includes hinged flight control surfaces. Flight controls systems connected to those surfaces will be mounted inside the structure before the model’s final assembly.
      Together, the two models can test Bodylski’s ideas and provide flight data for creating better computer models. In the future, those computer models could help researchers built atmospheric probes based on those designs. Bodylski’s concept called for sending the aircraft on missions attached to satellites. Once in the orbit of a planet, the probe aircraft – about the same size as the models – would separate from the satellite through pyrotechnic bolts, deploying in the atmosphere to collect data for study.
      Robert “Red” Jensen removes a major component from an aircraft mold for assembly of a prototype of an atmospheric probe as Justin Hall watches at NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Steve Freeman Current atmospheric probes, small satellites known as CubeSats, gather and transmit data for about 40 minutes and can take in approximately 10 data points before their parent satellite is out of range. Bodylski’s design could descend more rapidly and at a steeper angle, collecting the same information in 10 minutes, plus additional data for another 30 minutes from much deeper in a thick atmosphere.
      Following a series of technical briefings and flight readiness reviews, the aircraft is expected to fly in March 2024. It will fly as a glider air-launched from a cradle attached to rotorcraft often used by the lab. Future tests could include powered flight depending on what data researchers determine they need.
      “We are looking to take an idea to flight and show that a lifting body aircraft can fly as a probe at this scale – that it can be stable, that components can be integrated into the probe, and that the aircraft can achieve some amount of lift,” Bodylski said.
      Share
      Details
      Last Updated Mar 13, 2024 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Aeronautics Aeronautics Research Mission Directorate Center Innovation Fund Flight Innovation Space Technology Mission Directorate Explore More
      2 min read Tech Today: Suspended Solar Panels See the Light
      Article 1 day ago 5 min read NASA Helps Emerging Space Companies ‘Take the Heat’
      Article 6 days ago 5 min read NASA’s Network of Small Moon-Bound Rovers Is Ready to Roll
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Technologies
      Center Innovation Fund
      Space Technology Mission Directorate
      View the full article
  • Check out these Videos

×
×
  • Create New...