Jump to content

Starship Cam: Starship S20 May Be Stacked On Booster B4 Today!

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      HyAxiom’s 440-kilowatt phosphoric acid fuel cell is now its flagship product, and it still builds on technical know-how developed under the Apollo and space shuttle programs.Credit: HyAxiom Inc. NASA’s investment in fuel cells dates to the 1960s when most of the world was still reliant on fossil fuels. A fuel cell generates electricity and heat when hydrogen and oxygen bond through an electrolyte. Because its only by-product is water, it’s an environmentally friendly power source. 

      The agency’s interest in fuel cells came when NASA needed to fuel missions to the Moon. Engineers at NASA’s Johnson Space Center in Houston looked to fuel cells because they could provide more energy per pound than batteries could over the course of a long mission. At that time, fuel cells were just a concept that had never been put to practical use. 
      NASA funded development of the first practical fuel cells because they were necessary to cut weight from the Apollo spacecraft for Moon missions. Three fuel cells in the Apollo service module provided electricity for the capsule containing the astronauts. The division of Pratt & Whitney that made the fuel cells later became UTC Power, now a subsidiary of Doosan Group known as HyAxiom Inc.Credit: NASA NASA funded three companies, including a portion of Pratt & Whitney, to develop prototypes. For Apollo mission fuel cells, NASA selected the Pratt & Whitney group, which soon became UTC Power, as the supplier of all the space shuttle fuel cells. With the agency funding and shaping its technology development, UTC Power eventually started offering commercial fuel cells. The company is now known as HyAxiom Inc. and operates from the same plant in South Windsor, Connecticut, that produced fuel cells for the agency. 

      The company released its first commercial fuel cell in the mid-1990s and introduced its current product line about a decade later. 

      “The models they built for these products we use today had a lot of the electrochemistry understanding from the space program,” said Sridhar Kanuri, HyAxiom’s chief technology officer. 

      HyAxiom now produces around 120 units per year but expects to ramp up as government investments in fuel cells increase. The U.S. government plans to use fuel cells to store energy from renewable sources. 
      Today’s commercial fuel cell companies received much of their knowledge base from NASA. John Scott, NASA’s principal technologist for power and energy storage said, “All these companies trace their intellectual property heritage, their corporate heritage, even the generations of personnel to those companies NASA funded back in the early 1960s.” 
      Read More Share
      Last Updated Jul 15, 2024 Related Terms
      Technology Transfer & Spinoffs Apollo Johnson Space Center Spinoffs Technology Transfer Explore More
      2 min read Sky High Sustainability: NASA Johnson’s Pocket Prairie Flourishes Atop Building 12
      Article 6 hours ago 6 min read Voyagers of Mars: The First CHAPEA Crew’s Yearlong Journey 
      Article 4 days ago 5 min read From Polar Peaks to Celestial Heights: Christy Hansen’s Unique Path to Leading NASA’s Commercial Low Earth Orbit Development Program 
      Article 6 days ago Keep Exploring Discover Related Topics
      The Apollo Program
      Technology Transfer & Spinoffs
      Exploring the Moon
      View the full article
    • By SpaceX
      Starship | Fourth Flight Test
    • By Amazing Space
      To The Stars - A Tribute To Starship and Test Flight 42
    • By NASA
      Swarming for Success: Starling Completes Primary Mission
      by Tara Friesen
      After ten months in orbit, the Starling spacecraft swarm successfully demonstrated its primary mission’s key objectives, representing significant achievements in the capability of swarm configurations. 
      Swarms of satellites may one day be used in deep space exploration. An autonomous network of spacecraft could self-navigate, manage scientific experiments, and execute maneuvers to respond to environmental changes without the burden of significant communications delays between the swarm and Earth. 
      The four CubeSate spacecraft that make up the Starling swarm have demonstrated success in autonomous operations, completing all key mission objectives. “The success of Starling’s initial mission represents a landmark achievement in the development of autonomous networks of small spacecraft,” said Roger Hunter, program manager for NASA’s Small Spacecraft Technology program at NASA’s Ames Research Center in California’s Silicon Valley. “The team has been very successful in achieving our objectives and adapting in the face of challenges.”  
      Sharing the Work
      The Distributed Spacecraft Autonomy (DSA) experiment, flown onboard Starling, demonstrated the spacecraft swarm’s ability to optimize data collection across the swarm. The CubeSats analyzed Earth’s ionosphere by identifying interesting phenomena and reaching a consensus between each satellite on an approach for analysis.  
      By sharing observational work across a swarm, each spacecraft can “share the load” and observe different data or work together to provide deeper analysis, reducing human workload, and keeping the spacecraft working without the need for new commands sent from the ground. 
      The experiment’s success means Starling is the first swarm to autonomously distribute information and operations data between spacecraft to generate plans to work more efficiently, and the first demonstration of a fully distributed onboard reasoning system capable of reacting quickly to changes in scientific observations. 
      Communicating Across the Swarm
      A swarm of spacecraft needs a network to communicate between each other. The Mobile Ad-hoc Network (MANET) experiment automatically established a network in space, allowing the swarm to relay commands and transfer data between one another and the ground, as well as share information about other experiments cooperatively.  
      The team successfully completed all the MANET experiment objectives, including demonstrating routing commands and data to one of the spacecraft having trouble with space to ground communications, a valuable benefit of a cooperative spacecraft swarm. 
      “The success of MANET demonstrates the robustness of a swarm,” said Howard Cannon, Starling project manager at NASA Ames. “For example, when the radio went down on one swarm spacecraft, we ‘side-loaded’ the spacecraft from another direction, sending commands, software updates, and other vital information to the spacecraft from another swarm member.” 
      Autonomous Swarm Navigation 
      Navigating and operating in relation to one another and the planet is an important part of forming a swarm of spacecraft. Starling Formation-Flying Optical Experiment, or StarFOX, uses star trackers to recognize a fellow swarm member, other satellite, or space debris from the background field of stars, then estimate each spacecraft’s position and velocity. 
      The experiment is the first-ever published demonstration of this type of swarm navigation, including the ability to track multiple members of a swarm simultaneously and the ability to share observations between the spacecraft, improving accuracy when determining each swarm member’s orbit. 
      Near the end of mission operations, the swarm was maneuvered into a passive safety ellipse, and in this formation, the StarFOX team was able to achieve a groundbreaking milestone, demonstrating the ability to autonomously estimate the swarm’s orbits using only inter-satellite measurements from the spacecraft star trackers. 
      Managing Swarm Maneuvers 
      The ability to plan and execute maneuvers with minimal human intervention is an important part of developing larger satellite swarms. Managing the trajectories and maneuvers of hundreds or thousands of spacecraft autonomously saves time and reduces complexity. 
      The Reconfiguration and Orbit Maintenance Experiments Onboard (ROMEO) system tests onboard maneuver planning and execution by estimating the spacecraft’s orbit and planning a maneuver to a new desired orbit. 
      The experiment team has successfully demonstrated the system’s ability to determine and plan a change in orbit and is working to refine the system to reduce propellant use and demonstrate executing the maneuvers. The team will continue to adapt and develop the system throughout Starling’s mission extension. 
      Swarming Together
      Now that Starling’s primary mission objectives are complete, the team will embark on a mission extension known as Starling 1.5, testing space traffic coordination in partnership with SpaceX’s Starlink constellation, which also has autonomous maneuvering capabilities. The project will explore how constellations operated by different users can share information through a ground hub to avoid potential collisions.  
      “Starling’s partnership with SpaceX is the next step in operating large networks of spacecraft and understanding how two autonomously maneuvering systems can safely operate in proximity to each other. As the number of operational spacecraft increases each year, we must learn how to manage orbital traffic,” said Hunter. 
      NASA’s Small Spacecraft Technology program, based at Ames and within NASA’s Space Technology Mission Directorate (STMD), funds and manages the Starling mission. Blue Canyon Technologies designed and manufactured the spacecraft buses and is providing mission operations support. Rocket Lab USA, Inc. provided launch and integration services. Partners supporting Starling’s payload experiments have included Stanford University’s Space Rendezvous Lab in Stanford, California, York Space Systems (formerly Emergent Space Technologies) of Denver, Colorado, CesiumAstro of Austin, Texas, L3Harris Technologies, Inc., of Melbourne, Florida. Funding support for the DSA experiment was provided by NASA’s Game Changing Development program within STMD. Partners supporting Starling’s mission extension include SpaceX of Hawthorne, California, NASA’s Conjunction Assessment Risk Analysis (CARA) program, and the Department of Commerce. SpaceX manages the Starlink satellite constellation and the Collision Avoidance ground system.

      3D-MAT – A thermal protection material for the Artemis Generation
      by Frank Tavares
      The 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT) is a thermal protection material developed as a critical component of Orion, NASA’s newest spacecraft built for human deep space missions. It is able to maintain a high level of strength while enduring extreme temperatures during re-entry into Earth’s atmosphere at the end of Artemis missions to the Moon. 3D-MAT has become an essential piece of technology for NASA’s Artemis campaign that will establish the foundation for long-term scientific exploration at the Moon and prepare for human expeditions to Mars, for the benefit of all.
      On the 19th day of the Artemis I mission, the Moon grows larger in frame as Orion prepares for the return powered flyby on Dec. 5, when it will pass approximately 79 miles above the lunar surface. This image includes both the Orion crew module and service module, connected by the compression pad that utilizes the 3D-MAT material. The 3D-MAT project emerged from a technical problem in early designs of the Orion spacecraft. The compression pad—the connective interface between the crew module, where astronauts reside, and the service module carrying power, propulsion, supplies, and more—was exhibiting issues during Orion’s first test flight, Exploration Flight Test-1, in 2014. NASA engineers realized they needed to find a new material for the compression pad that could hold these different components of Orion together while withstanding the extremely high temperatures of atmospheric re-entry. Using a 3D weave for NASA heat shield materials had been explored, but after the need for a new material for the compression pad was discovered, development quickly escalated.
      This led to the evolution of 3D-MAT, a material woven with quartz yarn and cyanate ester resin in a unique three-dimensional design. The quartz yarn used is like a more advanced version of the fiberglass insulation you might have in your attic, and the resin is essentially a high-tech glue. These off-the-shelf aerospace materials were chosen for their ability to maintain their strength and keep heat out at extremely high temperatures. 3D-MAT is woven together with a specialized loom, which packs the yarns tightly together, and then injected with resin using a unique pressurized process. The result is a high-performance material that is extremely effective at maintaining strength when it’s hot, while also insulating the heat from the spacecraft it is protecting.
      The 3D-MAT thermal protection material.NASA Within three years, 3D-MAT went from an early-stage concept to a well-developed material and has now been integrated onto NASA’s flagship Artemis campaign. The use of 3D-MAT in the Orion spacecraft’s compression pad during the successful Artemis I mission demonstrated the material’s essential role for NASA’s human spaceflight efforts. This development was made possible within such a short span of time because of the team’s collaboration with small businesses including Bally Ribbon Mills, which developed the weaving process, and San Diego Composites, which co-developed the resin infusion procedure with NASA.
      The team behind its development won the NASA Invention of the Year Award, a prestigious honor recognizing how essential 3D-MAT was for the successful Artemis flight and how significant it is for NASA’s future Artemis missions. The inventor team recognized includes Jay Feldman and Ethiraj Venkatapathy from NASA’s Ames Research Center in California’s Silicon Valley, Curt Wilkinson of Bally Ribbon Mills, and Ken Mercer of Dynovas.
      3D-MAT has applications beyond NASA as well. Material processing capabilities enabled by 3D-MAT have led to other products such as structural parts for Formula One racecars and rocket motor casings. Several potential uses of 3D-MAT in commercial aerospace vehicles and defense are being evaluated based on its properties and performance.
      Winner of NASA Invention of the Year Award in 2023 Flown on Artemis I in 2022 Being assessed for use by multiple Department of Defense and commercial aerospace entities Partners
      The 3D-MAT project is led out of NASA Ames with the support of various partners, including Bally Ribbon Mills, NASA’s Johnson Space Center in Houston, and NASA’s Langley Research Center in Hampton, Viginia, with the support of the Game Changing Development Program through NASA’s Space Technology Mission Directorate.

      U.S. President Joe Biden Arrives Aboard Air Force One

      President Biden disembarks Air Force One at Moffett Federal Airfield before departing for a series of events in the region on May 9.NASA photo by Dominic Hart 2023 Presidential Rank & NASA Honor Awards Ceremony Held

      The annual Presidential Rank & NASA Honor Awards Ceremony was held at Ames, and shown virtually, on May 22 in the Ames Auditorium, in N201. Seventy-three employees were selected for individual Presidential and NASA Honor awards and 27 groups were selected for NASA Group Achievement Awards.
      Congratulations to all the recipients. Please see below for the list of awardees.

      2023 Presidential Rank and NASA Honor Award Recipients  
      Presidential Rank of Meritorious Senior Executive  
      Michael Hesse 
      Distinguished Service Medal 
      Bhavya Lal (A-Suite Nomination) 
      Thomas R. Norman 
      Huy K. Tran 
      2023 Distinguished Service Medal presented to Huy Tran, center, by Center Director Eugene Tu, right, and Deputy Center Director David Korsmeyer, left, in the N201 Auditorium. Diversity, Equity, Inclusion, and Accessibility Medal 
      Dora M. Herrera 
      Parag A. Vaishampayan 
      2023 Diversity, Equity, Inclusion and Accessibility Medal presented to Dora Herrera, center, by Center Director Eugene Tu, right, and Deputy Center Director David Korsmeyer, left, in the N201 Auditorium.NASA photo by Brandon Torres Early Career Achievement Medal 
      Natasha E. Batalha 
      Mirko E. Blaustein-Jurcan 
      Athena Chan 
      Kathryn M. Chapman 
      Chad J. Cleary 
      Christine E. Gregg 
      Supreet Kaur 
      James R. Koch 
      Elizabeth L. Lash 
      Terrence D. Lewis 
      Garrett G. Sadler 
      Meghan C. Saephan 
      Jordan A. Sakakeeny 
      Lauren M. Sanders 
      Amanda M. Saravia-Butler 
      Logan Torres 
      Lauren E. Wibe 
      Shannah N. Withrow 
      Emina Zanacic 
      2023 Early Career Achievement Medal presented to Emina Zanacic, center, by Center Director Eugene Tu, right, and Deputy Center Director David Korsmeyer, left, in the N201 Auditorium.NASA photo by Brandon Torres Exceptional Achievement Medal 
      Lauren J. Abbott 
      Parul Agrawal 
      Steven D. Beard 
      Janet E. Beegle 
      Jose V. Benavides 
      Divya Bhadoria 
      Sergio A. Briceno 
      Holly L. Brosnahan 
      Karen T. Cate 
      Fay C. Chinn 
      William J. Coupe 
      Frances M. Donovan (Langley Research Center Nomination) 
      Diana M. Gentry 
      Lynda L. Haines 
      Pallavi Hegde 
      Shu-Chun Y. Lin 
      Carlos Malpica 
      Jeffrey W. McCandless 
      Joshua D. Monk 
      Mariano M. Perez 
      Nathan J. Piontak (OPS Nomination) 
      Vidal Salazar 
      David W. Schwenke 
      Eric C. Stern 
      2023 Exceptional Achievement Medal presented to David W. Schwenke, center, by Center Director Eugene Tu, right, and Deputy Center Director David Korsmeyer, left, in the N201 Auditorium.NASA photo by Brandon Torres   
      Exceptional Engineering Achievement Medal  
      Joseph L. Rios 
      Mark M. Weislogel 
      Joseph D. Williams 
      Exceptional Public Achievement Medal 
      Danielle K. Lopez 
      Wade M. Spurlock 
      Sasha V. Weston 
      Exceptional Public Service Medal  
      John J. Freitas (OCOMM Nomination) 
      Michael J. Hirschberg 
      2023 Exceptional Public Service Medal presented to John J. Freitas, center, by Center Director Eugene Tu, right, and Deputy Center Director David Korsmeyer, left, in the N201 Auditorium.NASA photo by Brandon Torres Exceptional Scientific Achievement Medal  
      Noah G. Randolph-Flagg 
      Ju-Mee Ryoo 
      2023 Exceptional Scientific Achievement Medal presented to Ju-Mee Ryoo, center, by Center Director Eugene Tu, right, and Deputy Center Director David Korsmeyer, left, in the N201 Auditorium.NASA photo by Brandon Torres Exceptional Service Medal  
      Soheila Dianati 
      Robert A. Duffy 
      Shawn A. Engelland 
      Thomas P. Greene 
      Paul W. Lam 
      Bernadette Luna 
      Andres Martinez 
      Ramsey K. Melugin 
      Owen Nishioka 
      Kathryn B. Packard 
      Andrzej Pohorille (Posthumously) 
      Stevan Spremo 
      Mark S. Washington 
      2023 Exceptional Service Medal presented to Andres Martinez, center, by Center Director Eugene Tu, right, and Deputy Center Director David Korsmeyer, left, in the N201 Auditorium.NASA photo by Brandon Torres   
      Exceptional Technology Achievement Medal  
      Ruslan Belikov 
      Norbert P. Gillem 
      Emre Sozer 
      Outstanding Leadership Medal  
      Michael D. Barnhardt 
      William N. Chan 
      Marilyn Vasques 
      Silver Achievement Medal  
      Christine L. Munroe (MSEO – OSBP Nomination) 
      Juan L. Torres-Pérez (Langley Research Center Nomination) 
      2023 Silver Achievement Medal presented to Christine L. Munroe, center, by Center Director Eugene Tu, right, and Deputy Center Director David Korsmeyer, left, in the N201 Auditorium.NASA photo by Brandon Torres   
      Group Achievement Award  
      ARCTIC 3 Simulation Team 
      Artemis I Char Loss Anomaly Investigation Team 
      CapiSorb Visible System Team 
      Center Engagement Strategy 
      Convective Processes Experiment-AW and -CV 
      Design for Maintainability 
      DIP Planning and Field Test Team 
      Executive Wildfire Roundtable and Showcase 
      Flight IACUC 
      Long Static Pipe Manufacturing Team 
      Moon to Mars SE&I Verification Compliance Tool 
      N225 Arc Flash Mishap Investigation Team 
      NASA Aeronautics Sample Recovery Helicopter Team 
      NASA Ames SLS CFD Team 
      Next Generation Life Sciences Data Archive Team 
      OSHA VPP Recertification Team 
      Planetary Aeolian Laboratory ROSES Proposal Team 
      SOFIA Project Closeout Team 
      Submesoscale Ocean Dynamics Experiment (S-MODE) 
      The ACCLIP Team 
      The DCOTSS Team 
      The IMPACTS Team 
      The Meteorological Measurement System (MMS) 
      UAM eVTOL Vehicle Design and Analysis Team 
      UAM Side-by-Side 2 Aeroperformance Test Team 
      Western Diversity Time Series Data Collection Team 
      Wide Field of View 

      Ames Veterans Community Outreach Team Receives Federal Employee of the Year Award
      by Maria C. Lopez
      As part of the Ames Veterans Committee (AVC) employee resource group, Brad Ensign, and James Schwab, who are both Army veterans, work to support other veterans and our local Afghan and Ukrainian war refugee communities. The fall of Afghanistan to the Taliban was especially heart wrenching for Afghan war veterans and created a feeling of discouragement. The war in Ukraine only increased the level of disheartenment for many veterans. Importantly, the Ames Veterans Committee provides a forum to help veterans heal, and just as importantly, help our local community deal with the influx of Afghan and Ukrainian war refugees. 
      The Federal Employee of the Year Award was presented to (left to right) James Schwab, NASA Ames Veteran Committee (AVC); Brad Ensign, NASA AVC by Commander (CDR) Matthew Johns, MPH, Chair of the San Francisco Federal Executive Board and Regional Health Administrator, U.S. Department of Health and Human Services. Through the AVC Community Outreach Team, Brad Ensign coordinated to donate computers from the Ledios company, which is NASA’s Workplace & Collaboration Services to The Jewish Family & Community Services – East Bay and The Jewish Family Services of Silicon Valley. Leidos was awarded the Advanced Enterprise Global Information Technology Solutions (AEGIS) contract by NASA. In addition to AEGIS, Leidos provides enterprise IT services to NASA through the NASA End-User Services and Technologies (NEST) contract. Both contracts support NASA’s overall IT operation and mission. Once an end-user computer reaches the device’s end-of-life cycle per the NEST contract, the computers are repurposed for local charity use. The computers are verified to be in good working condition by the Leidos/NEST team. 
      Brad Ensign periodically pings the Ames NEST Center Operations manager for available computer donations and the manager verifies that good working computers are available for donation. Brad then contacts various Afghan and Ukrainian war refugee assistance charities to determine their computer needs. Many of these local charities rely on donations and do not have an IT budget. Once a need is determined by local charities, Brad coordinates the number of computers available and a delivery date and time. James Schwab enthusiastically supports this effort and has provided incredible logistical support transporting the computers to the donation location.
      Notably in October 2023, Brad and James successfully delivered 25 laptop computers, five desktop computers, and 30 monitors to the Jewish Family & Community Services – East Bay. 
      The support for the Jewish Family & Community Services continued and in December of 2023, Brad helped deliver groceries to Afghan war refugees. So far this year, Brad, James, the Ledios company, and the NASA Ames Veterans Committee have donated a total of 40 computers and 40 monitors. These computers are extremely helpful for Afghan and Ukrainian war refugees to write resumes, find jobs, communicate with loved ones left behind, assist with personal tasks, stay informed of world and local news, help their children with schoolwork, and for entertainment. Donated computers are a tremendous resource for local war refugees and this initiative helps NASA Ames Veterans ease feelings of distress by making a difference in their community. 
      On May 9, 2024, Brad and James received a Federal Employee of the Year Award from the San Francisco Federal Executive Board (SFFEB) for Volunteer Excellence based on their leadership on creating opportunities for the Ames Veterans Committee to work together during a trying time for veterans while making an ongoing, positive impact in the local community. 

      DC-8 Flying Laboratory Makes Farewell Flight Over Ames Prior to Retirement

      NASA Ames gets an up-close look at the NASA DC-8 Flying Laboratory’s final flyover at 11:17 a.m. PDT on Wednesday, May 15, prior to it’s retirement at Idaho State University in Pocatello, IdahoNASA photo by Brandon Torres After nearly 40 years of service to science, on May 15 the Ames community had a chance to bid a final farewell to the DC-8 Flying Laboratory as it made its way to retirement in Idaho. NASA Ames, in coordination with NASA Armstrong, had arranged for a low-pass flyover of Ames Research Center at approximately 11:10 a.m. PDT in honor of the staff, scientists, and engineers who enabled the DC-8 to make such a profound impact on Earth science around the globe.  
      The History of Ames and the DC-8
      The NASA DC-8 is a world-class flying laboratory that has played a crucial role in answering fundamental questions across nearly every scientific discipline exploring Earth’s interacting systems, and how they are changing. The versatile research aircraft was unprecedented for its ability to carry multiple instruments and thereby take simultaneous active, passive, and in-situ measurements, while also providing room for 42 investigators onboard and boasting an impressive range of more than 5,000 miles.  
      Ames has been involved in the science operations of the DC-8 since its arrival at Moffett Field in 1987, including long after the aircraft moved to NASA Armstrong (then NASA Dryden) in the late 1990s. Scientists at Ames continued to lead air quality and climate investigations. The Earth Science Project Office (ESPO) managed complex DC-8 deployments all over the world. And the National Suborbital Research Center (NSRC) provided critical engineering for instrument integration and the upgrading of onboard IT systems and networks, providing global satellite communications to enable real-time science anywhere in the world. 
      During its first scientific mission, the DC-8 helped to establish the primary cause of the ozone hole over the southern Pacific. Other early missions focused on atmospheric science and developing new instruments for remote sensing. This work ultimately led to the upcoming  NASA-ISRO Synthetic Aperture Radar (NISAR) mission, launching later this year, which will provide new insights into Earth’s processes.  
      The DC-8 went on to provide calibration and validation for numerous satellite missions, including the Total Ozone Mapping Spectrometer (TOMS) series of missions and later for the Aura satellite. The DC-8 also provided critical measurements over both poles as part of Operation IceBridge.
      The DC-8 successfully completed its final mission in March of this year, flying atmospheric sampling instruments for the Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ) campaign. Over the last decade, the DC-8 has also served an important role in training the next generation of Earth scientists and engineers through the Student Airborne Research Program (SARP).
      As we bid farewell to this special aircraft, the DC-8 has cleared the runway for the next generation of flying laboratory: the B777. A study performed by the National Academies of Science and Medicine strongly endorsed the need for a NASA flying laboratory to replace the DC-8, resulting in the acquisition of the B777. The team at Ames is working together with NASA Langley and NASA HQ to ensure the B777 will continue to support the science community and exceed the capabilities of the DC-8 with longer range, endurance, and payload capacity: honoring and expanding its legacy for generations of scientists to come.  

      Hangar 3 Historical Website is Now Live!

      The Historic Preservation Office at NASA Ames’ Hangar 3 historical web site is now live!  Ames Research Center and Planetary Ventures, in consultation with the National Park Service, California State Historic Preservation Office, and the Advisory Council on Historic Preservation created a website and film that documents the history and features of Hangar 3, provides valuable information for future researchers, and celebrates its local and global impact.
      Hangar 3 at Moffett Field You also can find additional historical information at NASA Ames and Moffett Field here, including buildings and districts listed in the National Register of Historic Places, information about Hangar 1 and Hangar 3, historical resources associated with the Space Shuttle and NASA Ames, and much more!

      In Memoriam …

      Fred Martwick, Senior Engineer at Ames, Passes Away
      It is with great sadness we share with you the news that our good friend and colleague, Fred G. Martwick, passed away on April 29, 2024, after a brief illness. A Celebration of Life service will be held on Tuesday, June 11, at 1 p.m. at the Calvary Church, 16330 Los Gatos Blvd, Los Gatos, California 95032.  The event is open to all who wish to attend.  In addition, everyone is invited to a flag ceremony to honor Fred on Tuesday, June 25, at 10:30 a.m. PDT in front of the N-200 flagpole at NASA Ames.
      Fred Martwick hiking in the High Sierras. Graduating in 1985 with a BS in mechanical engineering from San Jose State, Fred began his career with IBM in south San Jose.  After a few years, he came on-board at NASA Ames as a support service contractor in the Engineering Division. His abilities and personal work ethic were recognized, and he was quickly recruited for civil service (CS) conversion, first becoming an Army CS employee in the early 1990s, and later transitioning to NASA CS.
      In the 1990s, Fred supported and then led several successful space sciences projects.  Concurrently, he served as one of the Ames representatives of the Aerospace Mechanisms Symposium organizing committee, consisting of representatives from the other NASA centers and Lockheed Martin. This group organized and sponsored the symposium on a set rotation within the NASA centers. 
      In the late 1990s, after an offsite contractor failed to meet NASA’s specifications and timeline, the successful partnership of Fred and Dave Ackard managed the onsite manufacture and assembly of the SOFIA Cavity Door.  In the 2000s, Fred managed the planning, design, and prototype fabrication of a nano-satellite and deployment system in conjunction with Stanford.  Fred then managed the challenging procurement and fabrication of an intricate powered wind tunnel model of the Orion Crew Escape System.  The model and subsequent tests were key elements for the analysis test verification of the Escape System.
      In the 2010s, Fred had established an intricate manufacturing documentation control system, creating a contracting “war room” in the mezzanine above the N211 Fabrication Shop.  From here, large amounts of space flight certified animal hardware were planned, contracted, tracked, assembled, and certified for flight to the International Space Station.  Fred’s procurement and documentation control system greatly impressed visiting customers from NASA/JSC management. In 2014, Fred was awarded the coveted Silver Snoopy Award in recognition of his outstanding performance in space flight system development and manufacturing.
      By the 2020s, Fred had moved to the Chief Engineers Office in Code D supporting project oversight while keeping an eye on his upcoming retirement.  Fred’s dedication to NASA had pushed his retirement out a few times but was well within sight with the purchase of a beautiful home near Spokane, Washington. He was very involved with the organization Assist International and enjoyed working with the project Caminul Felix in Romania. Additionally, he worked with the Calvary Church ministry with junior high school kids. He was bus driver for the kids at the ministry, taking them to Hume Lake Christian Camp where he was the waterskiing boat driver for the kids as they waterskied behind the boat around the lake.
      Fred will be greatly missed by the many people who have worked with him over his 30 plus years of outstanding service.  He will be remembered as a man of unwavering faith, a shrewd negotiator, an excellent project manager and systems engineer capable of diving into and clearly documenting the details while not losing sight of the big picture.  His ability to “get things done” makes his passing a great loss for NASA.
      All of Fred’s many friends from his NASA family are welcome to attend the memorial service and flag ceremony.
      View the full article
    • By NASA
      Launching a Pair of Earth-Observing Small Satellites on This Week @NASA – May 31, 2024
  • Check out these Videos

  • Create New...