Jump to content

Views Of The Moon - Incredible Images From @NASA's Lunar Reconnaissance Orbiter LRO


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Close Up Views Of The Sun From Our Live Streams - Chat All Things Space
    • By Amazing Space
      LIVE NOW: Sun Close up Views/ 20th May Backyard Astronomy with Lunt Telescope
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Images Galaxies Near and Far
      This NASA/ESA Hubble Space Telescope image features the remote galaxy HerS 020941.1+001557, which appears as a red arc that partially encircles a foreground elliptical galaxy. ESA/Hubble & NASA, H. Nayyeri, L. Marchetti, J. Lowenthal This NASA/ESA Hubble Space Telescope image offers us the chance to see a distant galaxy now some 19.5 billion light-years from Earth (but appearing as it did around 11 billion years ago, when the galaxy was 5.5 billion light-years away and began its trek to us through expanding space). Known as HerS 020941.1+001557, this remote galaxy appears as a red arc partially encircling a foreground elliptical galaxy located some 2.7 billion light-years away. Called SDSS J020941.27+001558.4, the elliptical galaxy appears as a bright dot at the center of the image with a broad haze of stars outward from its core. A third galaxy, called SDSS J020941.23+001600.7, seems to be intersecting part of the curving, red crescent of light created by the distant galaxy.
      The alignment of this trio of galaxies creates a type of gravitational lens called an Einstein ring. Gravitational lenses occur when light from a very distant object bends (or is ‘lensed’) around a massive (or ‘lensing’) object located between us and the distant lensed galaxy. When the lensed object and the lensing object align, they create an Einstein ring. Einstein rings can appear as a full or partial circle of light around the foreground lensing object, depending on how precise the alignment is. The effects of this phenomenon are much too subtle to see on a local level but can become clearly observable when dealing with curvatures of light on enormous, astronomical scales.
      Gravitational lenses not only bend and distort light from distant objects but magnify it as well. Here we see light from a distant galaxy following the curve of spacetime created by the elliptical galaxy’s mass. As the distant galaxy’s light passes through the gravitational lens, it is magnified and bent into a partial ring around the foreground galaxy, creating a distinctive Einstein ring shape.
      The partial Einstein ring in this image is not only beautiful, but noteworthy. A citizen scientist identified this Einstein ring as part of the SPACE WARPS project that asked citizen scientists to search for gravitational lenses in images.
      Text Credit: ESA/Hubble
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated May 20, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Gravitational Lensing Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Gravitational Lenses



      Focusing in on Gravitational Lenses



      Hubble’s Night Sky Challenge


      View the full article
    • By NASA
      When future astronauts set foot on Mars, they will stand on decades of scientific groundwork laid by people like Andrea Harrington.  
      As NASA’s sample return curation integration lead, Harrington is helping shape the future of planetary exploration and paving the way for interplanetary discovery.  
      Official portrait of Andrea Harrington. NASA/Josh Valcarcel Harrington works in NASA’s Astromaterials Research and Exploration Sciences Division, or ARES, at Johnson Space Center in Houston, where she integrates curation, science, engineering, and planetary protection strategies into the design and operation of new laboratory facilities and sample handling systems. She also helps ensure that current and future sample collections—from lunar missions to asteroid returns—are handled with scientific precision and preserved for long-term study.  
      “I am charged with protecting the samples from Earth—and protecting Earth from the restricted samples,” Harrington said. This role requires collaboration across NASA centers, senior leadership, engineers, the scientific community, and international space exploration agencies. 
      With a multidisciplinary background in biology, planetary science, geochemistry, and toxicology, Harrington has become a key expert in developing the facility and contamination control requirements needed to safely preserve and study sensitive extraterrestrial samples. She works closely with current and future curators to improve operational practices and inform laboratory specifications—efforts that will directly support future lunar missions. 
      Andrea Harrington in front of NASA’s Astromaterials Research and Exploration Sciences Division Mars Wall at Johnson Space Center in Houston. Her work has already made a lasting impact. She helped develop technologies such as a clean closure system to reduce contamination during sample handling and ultraclean, three-chamber inert isolation cabinets. These systems have become standard equipment and are used for preserving samples from missions like OSIRIS-REx and Hayabusa2. They have also supported the successful processing of sensitive Apollo samples through the Apollo Next Generation Sample Analysis Program. 
      In addition to technology development, Harrington co-led the assessment of high-containment and pristine facilities to inform future technology and infrastructural requirements for Restricted Earth Returns, critical for sample returns Mars, Europa, and Enceladus.
      Harrington’s leadership, vision, and technical contribution have reached beyond ARES and have earned her two Director’s Commendations.   
      “The experiences I have acquired at NASA have rounded out my background even more and have provided me with a greater breadth of knowledge to draw upon and then piece together,” said Harrington. “I have learned to trust my instincts since they have allowed me to quickly assess and effectively troubleshoot problems on numerous occasions.” 
      Andrea Harrington in Johnson’s newly commissioned Advanced Curation Laboratory. Harrington also serves as the Advanced Curation Medical Geology lead. She and her team are pioneering new exposure techniques that require significantly less sample material to evaluate potential health risks of astromaterials.  
      Her team is studying a range of astromaterial samples and analogues to identify which components may trigger the strongest inflammatory responses, or whether multiple factors are at play. Identifying the sources of inflammation can help scientists assess the potential hazards of handling materials from different planetary bodies, guide decisions about protective equipment for sample processors and curators, and may eventually support astronaut safety on future missions. 
      Harrington also spearheaded a Space Act Agreement to build a science platform on the International Space Station that will enable planetary science and human health experiments in microgravity, advancing both human spaceflight and planetary protection goals.
      Andrea Harrington at the National Academies Committee on Planetary Protection and Committee on Astrobiology and Planetary Sciences in Irvine, California. Harrington credits her NASA career for deepening her appreciation of the power of communication. “The ability to truly listen and hear other people’s perspectives is just as important as the ability to deliver a message or convey an idea,” she said.  
      Her passion for space science is rooted in purpose. “What drew me to NASA is the premise that what I would be doing was not just for myself, but for the benefit of all,” she said. “Although I am personally passionate about the work I am doing, the fact that the ultimate goal is to enable the fulfillment of those passions for generations of space scientists and explorers to come is quite inspiring.” 
      Andrea Harrington and her twin sister, Jane Valenti, as children (top two photos) and at Brazos Bend State Park in Needville, Texas, in 2024. Harrington loves to travel, whether she is mountain biking through Moab, scuba diving in the Galápagos, or immersing herself in the architecture and culture of cities around the world. She shares her passion for discovery with her family—her older sister, Nicole Reandeau; her twin sister, Jane Valenti; and especially her husband, Alexander Smirnov.
      A lesson she hopes to pass along to the Artemis Generation is the spirit of adventure along with a reminder that exploration comes in many forms.  
      “Artemis missions and the return of pristine samples from another planetary bodies to Earth are steppingstones that will enable us to do even more,” Harrington said. “The experience and lessons learned could help us safely and effectively explore distant worlds, or simply inspire the next generation of explorers to do great things we can’t yet even imagine.” 
      Explore More
      2 min read Hubble Captures Cotton Candy Clouds
      This NASA/ESA Hubble Space Telescope image features a sparkling cloudscape from one of the Milky…
      Article 4 days ago 6 min read NASA, French SWOT Satellite Offers Big View of Small Ocean Features
      Article 5 days ago 2 min read Space Cloud Watch Needs Your Photos of Night-Shining Clouds 
      Noctilucent or night-shining clouds are rare, high-altitude clouds that glow with a blue silvery hue…
      Article 5 days ago View the full article
    • By Amazing Space
      LIVE NOW: Sun Close up Views/ 20th May Backyard Astronomy with Lunt Telescope
  • Check out these Videos

×
×
  • Create New...