Members Can Post Anonymously On This Site
Ultra-cool test of Jupiter instrument
-
Similar Topics
-
By NASA
Image data: NASA/JPL-Caltech/SwRI/MSSS; Image processing: Jackie Branc (CC BY) JunoCam, the visible light imager aboard NASA’s Juno spacecraft, captured this view of Jupiter’s northern high latitudes during the spacecraft’s 69th flyby of the giant planet on Jan. 28, 2025. Jupiter’s belts and zones stand out in this enhanced color rendition, along with the turbulence along their edges caused by winds going in different directions.
The original JunoCam data used to produce this view was taken from an altitude of about 36,000 miles (58,000 kilometers) above Jupiter’s cloud tops. JunoCam’s raw images are available for the public to peruse and process into image products. Citizen scientist Jackie Branc processed the image.
Since Juno arrived at Jupiter in 2016, it has been probing beneath the dense, forbidding clouds encircling the giant planet – the first orbiter to peer so closely. It seeks answers to questions about the origin and evolution of Jupiter, our solar system, and giant planets across the cosmos.
Learn more about NASA citizen science.
Image credit: Image data: NASA/JPL-Caltech/SwRI/MSSS; Image processing: Jackie Branc (CC BY)
View the full article
-
By NASA
Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA’s Webb Reveals New Details, Mysteries in Jupiter’s Aurora
NASA’s James Webb Space Telescope has captured new details of the auroras on our solar system’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth. Full image below. Credits:
NASA, ESA, CSA, Jonathan Nichols (University of Leicester), Mahdi Zamani (ESA/Webb) NASA’s James Webb Space Telescope has captured new details of the auroras on our solar system’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth. With Webb’s advanced sensitivity, astronomers have studied the phenomena to better understand Jupiter’s magnetosphere.
Auroras are created when high-energy particles enter a planet’s atmosphere near its magnetic poles and collide with atoms or molecules of gas. On Earth these are known as the Northern and Southern Lights. Not only are the auroras on Jupiter huge in size, they are also hundreds of times more energetic than those in Earth’s atmosphere. Earth’s auroras are caused by solar storms — when charged particles from the Sun rain down on the upper atmosphere, energize gases, and cause them to glow in shades of red, green and purple.
Image A: Close-up Observations of Auroras on Jupiter
NASA’s James Webb Space Telescope has captured new details of the auroras on our solar system’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth.
These observations of Jupiter’s auroras, taken at a wavelength of 3.36 microns (F335M) were captured with Webb’s NIRCam (Near-Infrared Camera) on Dec. 25, 2023. Scientists found that the emission from trihydrogen cation, known as H3+, is far more variable than previously believed. H3+ is created by the impact of high energy electrons on molecular hydrogen. Because this emission shines brightly in the infrared, Webb’s instruments are well equipped to observe it. NASA, ESA, CSA, Jonathan Nichols (University of Leicester), Mahdi Zamani (ESA/Webb) Jupiter has an additional source for its auroras: The strong magnetic field of the gas giant grabs charged particles from its surroundings. This includes not only the charged particles within the solar wind but also the particles thrown into space by its orbiting moon Io, known for its numerous and large volcanoes. Io’s volcanoes spew particles that escape the moon’s gravity and orbit Jupiter. A barrage of charged particles unleashed by the Sun also reaches the planet. Jupiter’s large and powerful magnetic field captures all of the charged particles and accelerates them to tremendous speeds. These speedy particles slam into the planet’s atmosphere at high energies, which excites the gas and causes it to glow.
Image B: Pullout of Aurora Observations on Jupiter (NIRCam Image)
These observations of Jupiter’s auroras (shown on the left of the above image) at 3.35 microns (F335M) were captured with NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) on Dec. 25, 2023. Scientists found that the emission from trihydrogen cation, known as H3+, is far more variable than previously believed. H3+ is created by the impact of high energy electrons on molecular hydrogen. Because this emission shines brightly in the infrared, Webb’s instruments are well equipped to observe it. The image on the right shows the planet Jupiter to indicate the location of the observed auroras, which was originally published in 2023. NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI), Jonathan Nichols (University of Leicester), Mahdi Zamani (ESA/Webb) Now, Webb’s unique capabilities are providing new insights into the auroras on Jupiter. The telescope’s sensitivity allows astronomers to capture fast-varying auroral features. New data was captured with Webb’s NIRCam (Near-Infrared Camera) Dec. 25, 2023, by a team of scientists led by Jonathan Nichols from the University of Leicester in the United Kingdom.
“What a Christmas present it was – it just blew me away!” shared Nichols. “We wanted to see how quickly the auroras change, expecting them to fade in and out ponderously, perhaps over a quarter of an hour or so. Instead, we observed the whole auroral region fizzing and popping with light, sometimes varying by the second.”
In particular, the team studied emission from the trihydrogen cation (H3+), which can be created in auroras. They found that this emission is far more variable than previously believed. The observations will help develop scientists’ understanding of how Jupiter’s upper atmosphere is heated and cooled.
The team also uncovered some unexplained observations in their data.
“What made these observations even more special is that we also took pictures simultaneously in the ultraviolet with NASA’s Hubble Space Telescope,” added Nichols. “Bizarrely, the brightest light observed by Webb had no real counterpart in Hubble’s pictures. This has left us scratching our heads. In order to cause the combination of brightness seen by both Webb and Hubble, we need to have a combination of high quantities of very low-energy particles hitting the atmosphere, which was previously thought to be impossible. We still don’t understand how this happens.”
Video: Webb Captures Jupiter’s Aurora
NASA’s James Webb Space Telescope has captured a spectacular light show on Jupiter — an enormous display of auroras unlike anything seen on Earth. These infrared observations reveal unexpected activity in Jupiter’s atmosphere, challenging what scientists thought they knew about the planet’s magnetic field and particle interactions. Combined with ultraviolet data from Hubble, the results have raised surprising new questions about Jupiter’s extreme environment.
Producer: Paul Morris. Writer: Thaddeus Cesari. Narrator: Professor Jonathan Nichols. Images: NASA, ESA, CSA, STScI. Music Credit: “Zero Gravity” by Brice Davoli [SACEM] via Koka Media [SACEM], Universal Production Music France [SACEM], and Universal Production Music. The team now plans to study this discrepancy between the Hubble and Webb data and to explore the wider implications for Jupiter’s atmosphere and space environment. They also intend to follow up this research with more Webb observations, which they can compare with data from NASA’s Juno spacecraft to better explore the cause of the enigmatic bright emission.
These results were published today in the journal Nature Communications.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
To learn more about Webb, visit:
https://science.nasa.gov/webb
Downloads
Click any image to open a larger version.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
View/Download the research results from the journal Nature Communications.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Bethany Downer – Bethany.Downer@esawebb.org
ESA/Webb, Baltimore, Md.
Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
Read more: NASA’s Webb Captures Neptune’s Auroras for the First Time
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Jupiter
What Is the Solar Wind?
Juno
NASA’s Juno spacecraft has explored Jupiter, its moons, and rings since 2016, gathering breakthrough science and breathtaking imagery.
Share
Details
Last Updated May 12, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Jupiter Planets Science & Research The Solar System View the full article
-
By European Space Agency
The NASA/ESA/CSA James Webb Space Telescope has captured new details of the auroras on our Solar System’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth. With Webb’s advanced sensitivity, astronomers have studied the phenomena to better understand Jupiter’s magnetosphere.
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Editor’s Note: The following is one of three related articles about the NASA Data Acquisition System and related efforts. Please visit Stennis News – NASA to access accompanying articles.
A blended team of NASA personnel and contractors support ongoing development and operation of the NASA Data Acquisition System at NASA’s Stennis Space Center. Team members include, left to right: Andrew Graves (NASA), Shane Cravens (Syncom Space Services), Peggi Marshall (Syncom Space Services), Nicholas Payton Karno (Syncom Space Services), Alex Elliot (NASA), Kris Mobbs (NASA), Brandon Carver (NASA), Richard Smith (Syncom Space Services), and David Carver (NASA)NASA/Danny Nowlin Members of the NASA Data Acquisition System team at NASA’s Stennis Space Center evaluate system hardware for use in monitoring and collecting propulsion test data at the site.NASA/Danny Nowlin NASA software engineer Alex Elliot, right, and Syncom Space Services software engineer Peggi Marshall fine-tune data acquisition equipment at NASA’s Stennis Space Center by adjusting an oscilloscope to capture precise measurements. NASA/Danny Nowlin Syncom Space Services software test engineer Nicholas Payton Karno monitors a lab console at NASA’s Stennis Space Center displaying video footage of an RS-25 engine gimbal test, alongside data acquisition screens showing lab measurements. NASA/Danny Nowlin Just as a steady heartbeat is critical to staying alive, propulsion test data is vital to ensure engines and systems perform flawlessly.
The accuracy of the data produced during hot fire tests at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, tells the performance story.
So, when NASA needed a standardized way to collect hot fire data across test facilities, an onsite team created an adaptable software tool to do it.
“The NASA Data Acquisition System (NDAS) developed at NASA Stennis is a forward-thinking solution,” said David Carver, acting chief of the Office of Test Data and Information Management. “It has unified NASA’s rocket propulsion testing under an adaptable software suite to meet needs with room for future expansion, both within NASA and potentially beyond.”
Before NDAS, contractors conducting test projects used various proprietary tools to gather performance data, which made cross-collaboration difficult. NDAS takes a one-size-fits-all approach, providing NASA with its own system to ensure consistency.
“Test teams in the past had to develop their own software tools, but now, they can focus on propulsion testing while the NDAS team focuses on developing the software that collects data,” said Carver.
A more efficient workflow has followed since the software system is designed to work with any test hardware. It allows engineers to seamlessly work between test areas, even when upgrades have been made and hardware has changed, to support hot fire requirements for the agency and commercial customers.
With the backing and resources of the NASA Rocket Propulsion Test (RPT) Program Office, a blended team of NASA personnel and contractors began developing NDAS in 2011 as part of the agency’s move to resume control of test operations at NASA Stennis. Commercial entities had conducted the operations on NASA’s behalf for several decades.
The NASA Stennis team wrote the NDAS software code with modular components that function independently and can be updated to meet the needs of each test facility. The team used LabVIEW, a graphical platform that allows developers to build software visually rather than using traditional text-based code.
Syncom Space Services software engineer Richard Smith, front, analyzes test results using the NASA Data Acquisition System Displays interface at NASA’s Stennis Space Center while NASA software engineer Brandon Carver actively tests and develops laboratory equipment. NASA/Danny Nowlin NASA engineers, from left to right, Tristan Mooney, Steven Helmstetter Chase Aubry, and Christoffer Barnett-Woods are shown in the E-1 Test Control Center where the NASA Data Acquisition System is utilized for propulsion test activities. NASA/Danny Nowlin NASA engineers Steven Helmstetter, Christoffer Barnett-Woods, and Tristan Mooney perform checkouts on a large data acquisition system for the E-1 Test Stand at NASA’s Stennis Space Center. The data acquisition hardware, which supports testing for E Test Complex commercial customers, is controlled by NASA Data Acquisition System software that allows engineers to view real-time data while troubleshooting hardware configuration.NASA/Danny Nowlin NASA engineers Steven Helmstetter, left, and Tristan Mooney work with the NASA Data Acquisition System in the E-1 Test Control Center, where the system is utilized for propulsion test activities.NASA/Danny Nowlin “These were very good decisions by the original team looking toward the future,” said Joe Lacher, a previous NASA project manager. “LabVIEW was a new language and is now taught in colleges and widely used in industry. Making the program modular made it adaptable.”
During propulsion tests, the NDAS system captures both high-speed and low-speed sensor data. The raw sensor data is converted into units for both real-time monitoring and post-test analysis.
During non-test operations, the system monitors the facility and test article systems to help ensure the general health and safety of the facility and personnel.
“Having quality software for instrumentation and data recording systems is critical and, in recent years, has become increasingly important,” said Tristan Mooney, NASA instrumentation engineer. “Long ago, the systems used less software, or even none at all. Amplifiers were configured with physical knobs, and data was recorded on tape or paper charts. Today, we use computers to configure, display, and store data for nearly everything.”
Developers demonstrated the new system on the A-2 Test Stand in 2014 for the J-2X engine test project.
From there, the team rolled it out on the Fred Haise Test Stand (formerly A-1), where it has been used for RS-25 engine testing since 2015. A year later, teams used NDAS on the Thad Cochran Test Stand (formerly B-2) in 2016 to support SLS (Space Launch System) Green Run testing for future Artemis missions.
One of the project goals for the system is to provide a common user experience to drive consistency across test complexes and centers.
Kris Mobbs, current NASA project manager for NDAS, said the system “really shined” during the core stage testing. “We ran 24-hour shifts, so we had people from across the test complex working on Green Run,” Mobbs said. “When the different shifts came to work, there was not a big transition needed. Using the software for troubleshooting, getting access to views, and seeing the measurements were very common activities, so the various teams did not have a lot of build-up time to support that test.”
Following success at the larger test stands, teams started using NDAS in the E Test Complex in 2017, first at the E-2 Test Stand, then on the E-1 and E-3 stands in 2020.
Growth of the project was “a little overwhelming,” Lacher recalled. The team maintained the software on active stands supporting tests, while also continuing to develop the software for other areas and their many unique requirements.
Each request for change had to be tracked, implemented into the code, tested in the lab, then deployed and validated on the test stands.
“This confluence of requirements tested my knowledge of every stand and its uniqueness,” said Lacher. “I had to understand the need, the effort to meet it, and then had to make decisions as to the priorities the team would work on first.”
Creation of the data system and its ongoing updates have transformed into opportunities for growth among the NASA Stennis teams working together.
“From a mechanical test operations perspective, NDAS has been a pretty easy system to learn,” said Derek Zacher, NASA test operations engineer. “The developers are responsive to the team’s ideas for improvement, and our experience has consistently improved with the changes that enable us to view our data in new ways.”
Originally designed to support the RPT office at NASA Stennis, the software is expanding beyond south Mississippi to other test centers, attracting interest from various NASA programs and projects, and garnering attention from government agencies that require reliable and scalable data acquisition. “It can be adopted nearly anywhere, such as aerospace and defense, research and development institutions and more places, where data acquisition systems are needed,” said Mobbs. “It is an ever-evolving solution.”
Read More Share
Details
Last Updated May 08, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center View the full article
-
By NASA
One half of NASA’s nearly complete Nancy Grace Roman Space Telescope just passed a lengthy test to ensure it will function properly in the space environment. This milestone keeps Roman well on track for its target launch by May 2027, with the team aiming for as early as fall 2026.
This photo shows half of the NASA’s Nancy Grace Roman observatory — the outer barrel assembly, deployable aperture cover, and test solar arrays — fully deployed in a thermal chamber at NASA’s Goddard Space Flight Center in Greenbelt, Md., for environmental testing. Credit: NASA/Sydney Rohde “This milestone tees us up to attach the flight solar array sun shield to the outer barrel assembly, and deployable aperture cover, which we’ll begin this month,” said Jack Marshall, who leads integration and testing for these elements at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Then we’ll complete remaining environmental tests for the flight assembly before moving on to connect Roman’s two major assemblies and run the full observatory through testing, and then we’ll be ready to launch!”
Prior to this thermal testing, technicians integrated Roman’s deployable aperture cover, a visor-like sunshade, to the outer barrel assembly, which will house the telescope and instruments, in January, then added test solar panels in March. They moved this whole structure into the Space Environment Simulator test chamber at NASA Goddard in April.
There, it was subjected to the hot and cold temperatures it will experience in space. Next, technicians will join Roman’s flight solar panels to the outer barrel assembly and sunshade. Then the structure will undergo a suite of assessments, including a shake test to ensure it can withstand the vibrations experienced during launch.
This photo captures the installation of the test solar panels for NASA’s Nancy Grace Roman Space Telescope, which took place in March. One panel is lifted in the center of the frame on its way to being attached to the outer barrel assembly at right. The deployable aperture cover is stowed on the front of the outer barrel assembly, and the other half of the observatory — the spacecraft and integrated payload assembly, which consists of the telescope, instrument carrier, and two instruments — appears at the left of the photo.Credit: NASA/Jolearra Tshiteya Meanwhile, Roman’s other major portion — the spacecraft and integrated payload assembly, which consists of the telescope, instrument carrier, and two instruments — will undergo its own shake test, along with additional assessments. Technicians will install the lower instrument sun shade and put this half of the observatory through a thermal vacuum test in the Space Environment Simulator.
“The test verifies the instruments will remain at stable operating temperatures even while the Sun bakes one side of the observatory and the other is exposed to freezing conditions — all in a vacuum, where heat doesn’t flow as readily as it does through air,” said Jeremy Perkins, an astrophysicist serving as Roman’s observatory integration and test scientist at NASA Goddard. Keeping the instrument temperatures stable ensures their readings will be precise and reliable.
Technicians are on track to connect Roman’s two major parts in November, resulting in a complete observatory by the end of the year. Following final tests, Roman is expected to ship to the launch site at NASA’s Kennedy Space Center in Florida for launch preparations in summer 2026. Roman remains on schedule for launch by May 2027, with the team aiming for launch as early as fall 2026.
This infographic shows the two major subsystems that make up NASA’s Nancy Grace Roman Space Telescope. The subsystems are each undergoing testing prior to being joined together this fall.Credit: NASA’s Goddard Space Flight Center To virtually tour an interactive version of the telescope, visit:
https://roman.gsfc.nasa.gov/interactive
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center
301-286-1940
Share
Details
Last Updated May 07, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Goddard Space Flight Center Technology Explore More
6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
Article 2 weeks ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
Article 2 months ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
Article 10 months ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.