Jump to content

2019 the US Navy filmed “SPHERICAL” shaped UFOs going into the water


USH

Recommended Posts

This footage was filmed in the CIC (Combat Information Center) of the USS Omaha on July 15th 2019 in a warning area off San Diego. This footage depicts a UAP event series that reached a crescendo with one of the unknown targets entering the water. No wreckage found. None of the unknown craft were recovered. 


uso%252C%2Bufo%252C%2Bus%252C%2Bnavy%252C%2Bspherical.jpg

Location of ship: 32°29'21.9”N 119°21'53.0”W 
Time of event (Submersion) 11pm PST (6am GMT - indicated a day ahead on display) 

It is noted in intelligence reports that the “spherical” craft appeared to be transmedium capable, and were observed descending into the water without destruction. 

It is noted in intelligence reports that the “spherical” craft could not be found upon entry to the water - that a submarine was used in the search - and recovered nothing. 

Transcription: 
:05 "Took off, bookin' it." 
:21 “Break, OMAHA, PINCKNEY, KIDD, RAFAEL PERALTA possibility to launch helo ASAP”. 
 :28 "If it splashes you get a bearing and range.” 
:30 “Yes sir." 
:32 "... keep going bro [inaudible]” 
:33 [inaudible] 
:36 "... it's windy as fuck out there." 
:42 "... got a lotta white water out there. Six foot swells." 
:43 "Whoa, it's getting close." 
:50 "We have, uh, 31 knots sustained wind topside, gust of 40 [knots]." 
:56 “Whoa, it splashed!" 
:57 “Splashed!" 
:58 “Mark bearing and range.”

“In the end I’m 50/50 that it is man made tech from somewhere. Either way it’s world changing. Because of the incredible energy capacity of the crafts.” - Crewman, USS Omaha.

Summary: 
What’s presented here is genuine UFO / UAP footage - evidence - with impressive provenance. These are images and video shot by our US Military - during a variety of UAP encounters. Incursions - by seemingly Advanced Transmedium Vehicles of unknown origin - interacting and observing our Navy’s warships and fleet deployments in a restricted airspace. 

The Night Vision and FLIR technologies represented in this content, in this case, is tied into some of the most sophisticated weapon systems known to humankind. 

The evidence here must be differentiated from other UAP documentation - due to the context of capture alone. Collectively, this data drop represents a small section within a large mosaic of UAP awareness by our DoD. 

And its presence in a classified series of intelligence briefings - clearly demonstrates how the UAP subject is being viewed, pursued and handled by the United States defense industry. 

Jeremy Kenyon Lockyer Corbell (aka 4Name)

 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Linette Boisvert turned a childhood love of snow into a career as a sea ice scientist studying climate change.
      Name: Linette Boisvert
      Title: Assistant Lab Chief, Cryospheric Sciences Branch, and Deputy Project Scientist for the Aqua Satellite
      Formal Job Classification: Sea Ice Scientist
      Organization: Cryospheric Science Branch, Science Directorate (Code 615)
      “When it snowed, school was cancelled so I loved winter weather, and I was fascinated how weather could impact our daily lives,” said Linette. “One of my undergraduate classes had a guest lecturer talk about the Arctic and that is when decided that I wanted to become an Arctic scientist.”Photo credit: NASA/Kyle Krabill What do you do and what is most interesting about your role here at Goddard? 
      As a sea ice scientist, I study interactions between the sea ice and the atmosphere. I’m interested in how the changing sea ice conditions and loss of Arctic ice are affecting the atmospheric conditions in the Artic. 
      Why did you become a sea ice scientist? What is your educational background?  
      I grew up in Maryland. When it snowed, school was cancelled so I loved winter weather, and I was fascinated how weather could impact our daily lives. One of my undergraduate classes had a guest lecturer talk about the Arctic and that is when decided that I wanted to become an Arctic scientist. This also coincided with the Arctic sea ice minimum in 2007, at the time, a record low.
      In 2008, I got a B.S. in environmental science with a minor in math from the University of Maryland, Baltimore County (UMBC). I received my master’s and, in 2013, got a Ph.D. in atmospheric and oceanic sciences from the University of Maryland, College Park.
      How did you come to Goddard?
      My doctorate advisor worked at Goddard. In 2009, he brought me into Goddard’s lab to do my Ph.D. research. I became a post-doctorate in 2013, an assistant research scientist in 2016 (employed by UMD/ESSIC) and, in 2018, a civil servant.
      Dr. Linette Boisvert is a sea ice scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. Photo credit: NASA/Jeremy Harbeck What is the most interesting field work you do as the assistant lab chief of Goddard’s Cryospheric Sciences Branch?
      From 2018 to 2020, I was the deputy project scientist for NASA’s largest and longest running airborne campaign, Operation IceBridge. This involved flying aircraft with scientific instruments over both land ice and sea ice in the Arctic and Antarctic. Every spring, we would set up a base camp in a U.S. Air Force base in Greenland and fly over parts of the sea ice over Greenland and the Arctic, and in the fall we would base out of places like Punta Arenas, Chile, and Hobart, Australia, to fly over the Antarctic. 
      We would fly low, at 1,500 feet above the surface. It is very, very cool to see the ice firsthand. It is so pretty, so vast, and complex. We would spend 12 hours a day on a plane just surveying the ice.
      Being based out of Greenland is very remote. Everything is white. Everything looks like it is closer than it is. You do not have a point of reference for any perspective. It is very quiet. There is no background ambient noise. You do not hear bugs, birds, or cars, just quiet. 
      Our team was about 20 people. Other people live at the base. The campaigns lasted six to eight weeks. I was there about three to four weeks each time. Many of the group had been doing these campaigns for a decade. I felt like I had joined a family. In the evenings, we would often cook dinner together and play games. On days we could not fly, we would go on adventures together like visiting a glacier or hiking. We saw musk ox, Arctic fox, Arctic hares, and seals. 
      How did it feel to become the deputy project scientist for the Aqua satellite, which provided most of the data you used for your doctorate and publications?
      In January 2023, I became the deputy project scientist for the Aqua satellite, which launched in 2002. Aqua measures the Earth’s atmospheric temperature, humidity, and trace gases. Most of my doctorate and publications used data from Aqua to look at how the sea ice loss in the Arctic is allowing for excess heat and moisture from the ocean to move into the atmosphere resulting in a warmer and wetter Arctic. 
      I am honored. I feel like I have come full circle. The team welcomed me into the mission and taught me a lot of things. I am grateful to be working with such a brilliant, hardworking team.
      Who is your science hero?
      My father encouraged me to get a doctorate in science. My father has a doctorate in computer science and math. He works at the National Institute of Standards and Technology. I wanted to be like him when I was growing up. I came close, working at NASA, another part of the federal government. My mother, a French pastry chef, always kept me well fed.
      “We would fly low, at 1,500 feet above the surface,” said Linette. “It is very, very cool to see the ice firsthand. It is so pretty, so vast, and complex. We would spend 12 hours a day on a plane just surveying the ice.”Photo credit: NASA/John Sonntag My father is very proud of me. He thinks I am more of a superstar than he was at my age, but I do not believe it. My mother is also proud and continues to keep me well fed.
      Who is your Goddard mentor?
      Claire Parkinson, now an emeritus, was the project scientist for Aqua since its inception. When she retired, she encouraged me to apply for the deputy position. She had confidence in me which gave me the confidence to apply for the position. She is still always available to answer any questions. I am very thankful that she has been there for me throughout my career.
      What advice do you give to those you mentor?
      I recently began advising young scientists; one undergraduate student, two graduate students, and one post-doctoral scientist. We meet weekly as a group and have one-on-one meetings when appropriate. They share their progress on their work. Sometimes we practice presentations they are about to give. 
      It is sometimes hard starting out to think that you are smart because Goddard is full of so many smart people. I tell them that they are just as capable when it comes to their research topic. I tell them that they fit in well with the Goddard community. I want to create a comfortable, respectful, and inclusive environment so that they remain in science. 
      What do you do for fun?
      I enjoy running and paddle boarding with my dog Remi, my long-haired dachshund. I enjoy reading. I love to travel and be around friends and family. But I do not enjoy cooking, so I do not bake French pastries like my mom. 
      Where do you see yourself in five years?
      I hope to continue doing research including field work. It would be great if some of my students finished their studies and joined my lab. I hope that I am still making people proud of me. 
      What is your “six-word memoir”? A six-word memoir describes something in just six words.
      Hard-working. Smart. Inquisitive. Adventurous. Kind. Happy. 
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Sep 10, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Earth Goddard Space Flight Center Ice & Glaciers People of NASA Explore More
      7 min read Kyle Helson Finds EXCITE-ment in Exoplanet Exploration
      Article 3 hours ago 5 min read Zachary Morse Hikes Hilltops, Caves Lava Tubes to Ready Moon Missions
      Article 1 week ago 5 min read Aaron Vigil Helps Give SASS to Roman Space Telescope
      Article 2 weeks ago View the full article
    • By NASA
      The dome-shaped Brandburg Massif, near the Atlantic coast of central Namibia, containing Brandberg Mountain, the African nation’s highest peak and ancient rock paintings going back at least 2,000 years, is pictured from the International Space Station as it orbited 261 miles above.
      Image Credit: NASA
      View the full article
    • By NASA
      Tiny satellites, also known as CubeSats, are pictured after being deployed into Earth orbit from a small satellite orbital deployer on the outside of the International Space Station’s Kibo laboratory module. The CubeSats were delivered aboard the Northrop Grumman Cygnus space freighter and will serve a variety of educational and research purposes for public and private organizations around the world.
      Image Credit: NASA/Tracy Dyson
      View the full article
    • By NASA
      Hubble Space Telescope Home NASA’s Hubble, MAVEN… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   6 min read
      NASA’s Hubble, MAVEN Help Solve the Mystery of Mars’ Escaping Water
      NASA, ESA, STScI, John T. Clarke (Boston University); Processing: Joseph DePasquale (STScI) Mars was once a very wet planet as is evident in its surface geological features. Scientists know that over the last 3 billion years, at least some water went deep underground, but what happened to the rest? Now, NASA’s Hubble Space Telescope and MAVEN (Mars Atmosphere and Volatile Evolution) missions are helping unlock that mystery.
      “There are only two places water can go. It can freeze into the ground, or the water molecule can break into atoms, and the atoms can escape from the top of the atmosphere into space,” explained study leader John Clarke of the Center for Space Physics at Boston University in Massachusetts. “To understand how much water there was and what happened to it, we need to understand how the atoms escape into space.”
      Clarke and his team combined data from Hubble and MAVEN to measure the number and current escape rate of the hydrogen atoms escaping into space. This information allowed them to extrapolate the escape rate backwards through time to understand the history of water on the Red Planet.
      Escaping Hydrogen and “Heavy Hydrogen”
      Water molecules in the Martian atmosphere are broken apart by sunlight into hydrogen and oxygen atoms. Specifically, the team measured hydrogen and deuterium, which is a hydrogen atom with a neutron in its nucleus. This neutron gives deuterium twice the mass of hydrogen. Because its mass is higher, deuterium escapes into space much more slowly than regular hydrogen.
      Over time, as more hydrogen was lost than deuterium, the ratio of deuterium to hydrogen built up in the atmosphere. Measuring the ratio today gives scientists a clue to how much water was present during the warm, wet period on Mars. By studying how these atoms currently escape, they can understand the processes that determined the escape rates over the last four billion years and thereby extrapolate back in time.
      Although most of the study’s data comes from the MAVEN spacecraft, MAVEN is not sensitive enough to see the deuterium emission at all times of the Martian year. Unlike the Earth, Mars swings far from the Sun in its elliptical orbit during the long Martian winter, and the deuterium emissions become faint. Clarke and his team needed the Hubble data to “fill in the blanks” and complete an annual cycle for three Martian years (each of which is 687 Earth days). Hubble also provided additional data going back to 1991 – prior to MAVEN’s arrival at Mars in 2014.
      The combination of data between these missions provided the first holistic view of hydrogen atoms escaping Mars into space.
      These are far-ultraviolet Hubble images of Mars near its farthest point from the Sun, called aphelion, on December 31, 2017 (top), and near its closest approach to the Sun, called perihelion, on December 19, 2016 (bottom). The atmosphere is clearly brighter and more extended when Mars is close to the Sun.
      Reflected sunlight from Mars at these wavelengths shows scattering by atmospheric molecules and haze, while the polar ice caps and some surface features are also visible. Hubble and MAVEN showed that Martian atmospheric conditions change very quickly. When Mars is close to the Sun, water molecules rise very rapidly through the atmosphere, breaking apart and releasing atoms at high altitudes. NASA, ESA, STScI, John T. Clarke (Boston University); Processing: Joseph DePasquale (STScI)
      Download this image

      A Dynamic and Turbulent Martian Atmosphere
      “In recent years scientists have found that Mars has an annual cycle that is much more dynamic than people expected 10 or 15 years ago,” explained Clarke. “The whole atmosphere is very turbulent, heating up and cooling down on short timescales, even down to hours. The atmosphere expands and contracts as the brightness of the Sun at Mars varies by 40 percent over the course of a Martian year.”
      The team discovered that the escape rates of hydrogen and deuterium change rapidly when Mars is close to the Sun. In the classical picture that scientists previously had, these atoms were thought to slowly diffuse upward through the atmosphere to a height where they could escape.
      But that picture no longer accurately reflects the whole story, because now scientists know that atmospheric conditions change very quickly. When Mars is close to the Sun, the water molecules, which are the source of the hydrogen and deuterium, rise through the atmosphere very rapidly releasing atoms at high altitudes.
      The second finding is that the changes in hydrogen and deuterium are so rapid that the atomic escape needs added energy to explain them. At the temperature of the upper atmosphere only a small fraction of the atoms have enough speed to escape the gravity of Mars. Faster (super-thermal) atoms are produced when something gives the atom a kick of extra energy. These events include collisions from solar wind protons entering the atmosphere or sunlight that drives chemical reactions in the upper atmosphere.
      Mars was once a very wet planet. Scientists know that over the last 3 billion years, some of the water went underground, but what happened to the rest? Credit: NASA’s Goddard Space Flight Center; Lead Producer: Paul Morris; Mars Animations Producer: Dan Gallagher Serving as a Proxy
      Studying the history of water on Mars is fundamental not only to understanding planets in our own solar system but also the evolution of Earth-size planets around other stars. Astronomers are finding more and more of these planets, but they’re difficult to study in detail. Mars, Earth and Venus all sit in or near our solar system’s habitable zone, the region around a star where liquid water could pool on a rocky planet; yet all three planets have dramatically different present-day conditions. Along with its sister planets, Mars can help scientists grasp the nature of far-flung worlds across our galaxy.
      These results appear in the July 26 edition of Science Advances, published by the American Association for the Advancement of Science.
      About the Missions
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      MAVEN’s principal investigator is based at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder. LASP is also responsible for managing science operations and public outreach and communications. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the MAVEN mission. Lockheed Martin Space built the spacecraft and is responsible for MAVEN mission operations at Goddard. NASA’s Jet Propulsion Laboratory in Southern California provides navigation and Deep Space Network support. The MAVEN team is preparing to celebrate the spacecraft’s 10th year at Mars in September 2024.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ann Jenkins and Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contact:
      John T. Clarke
      Boston University, Boston, MA
      Share








      Details
      Last Updated Sep 05, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Mars MAVEN (Mars Atmosphere and Volatile EvolutioN) Missions Planetary Science Planets Science Mission Directorate The Solar System Keep Exploring Discover More Topics From Hubble and Maven
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      MAVEN


      The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is the first mission devoted to understanding the Martian upper atmosphere.


      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…

      View the full article
    • By NASA
      2 min read
      Hubble Zooms into the Rosy Tendrils of Andromeda
      NASA, ESA, M. Boyer (Space Telescope Science Institute), and J. Dalcanton (University of Washington); Image Processing: Gladys Kober (NASA/Catholic University of America) Clusters of stars set the interstellar medium ablaze in the Andromeda Galaxy about 2.5 million light-years away. Also known as M31, Andromeda is the Milky Way’s closest major galaxy. It measures approximately 152,000 light-years across and, with almost the same mass as our home galaxy, is headed for a collision with the Milky Way in 2-4 billion years. In the meantime, Andromeda remains an object of study for many astronomers.
      As a spiral galaxy, Andromeda’s winding arms are one of its most remarkable features. NASA’s Hubble Space Telescope zoomed in to get a close look at one of its tendrils in the northeast, revealing swathes of ionized gas. These regions — which are common in spiral and irregular galaxies — often indicate the presence of recent star formation. The combination of stellar nurseries and supernovae create a dynamic environment that excites the surrounding hydrogen gas, flourishing it into a garden of star-studded roses.
      NASA, ESA, M. Boyer (Space Telescope Science Institute), and J. Dalcanton (University of Washington); Image Processing: Gladys Kober (NASA/Catholic University of America) Scientists probed Andromeda’s spiral arms using Hubble’s Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3) to analyze the collection of stars buried in its cosmic bouquets. With ACS and WFC3’s wide spectral coverage, Hubble could peer through the hedges of gas and observe a valuable sample of these stars. The extent of the study spanned a vast range of stars, providing not just a clear view of Andromeda’s stellar history and diversity, but also more insight on stellar formation and evolution overall. By examining these stars in our local cosmic neighborhood, scientists can better understand those within galaxies in the distant universe.

      Download First Image


      Download Second Image

      This inset image shows the location of Hubble’s view within the Andromeda galaxy. NASA, ESA, M. Boyer (Space Telescope Science Institute), J. Dalcanton (University of Washington), and KPNO/NOIRLab/NSF/AURA/Adam Block; Image Processing: Gladys Kober (NASA/Catholic University of America) This inset image shows the location of Hubble’s view within the Andromeda galaxy. NASA, ESA, M. Boyer (Space Telescope Science Institute), J. Dalcanton (University of Washington), and KPNO/NOIRLab/NSF/AURA/Adam Block; Image Processing: Gladys Kober (NASA/Catholic University of America) Explore More

      Hubble’s Galaxies

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Aug 30, 2024 Editor Michelle Belleville Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Galaxies Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science



      Hubble’s Galaxies



      Stars


      View the full article
  • Check out these Videos

×
×
  • Create New...