Members Can Post Anonymously On This Site
Masked campaign
-
Similar Topics
-
By NASA
Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
Perseverance Kicks off the Crater Rim Campaign!
Mastcam-Z mosaic made of 59 individual Mastcam-Z images showing the area Perseverance will climb in the coming weeks on its way to Dox Castle, the rover’s first stop on the crater rim. NASA/JPL-Caltech/ASU/MSSS Perseverance is officially headed into a new phase of scientific investigation on the Jezero Crater rim!
For the last 2 months, the Perseverance rover has been exploring the Neretva Vallis region of Jezero Crater, where rocks with interesting popcorn-like textures and “leopard spot” patterns have fascinated us all. Now, the rover has begun its long ascent up the crater rim, and is officially kicking off a new phase of exploration for the mission.
Strategic (longer-term) planning is particularly important for the Mars 2020 mission given the crucial role Perseverance plays in collecting samples for Mars Sample Return, and the Mars 2020 team undertakes this planning in the form of campaigns. Perseverance has now completed four such campaigns— the Crater Floor, Delta Front, Upper Fan and Margin Unit campaigns respectively— making the Crater Rim Campaign next in line. Given its broad scope and the wide diversity of rocks we expect to encounter and sample along the way, it may be the most ambitious campaign the team has attempted so far.
The team also has less information from orbiter data to go on compared to previous campaigns, because this area of the crater rim does not have the high-resolution, hyperspectral imaging of CRISM that helped inform much of our geological unit distinctions inside the crater. This means that Mastcam-Z multispectral and SuperCam long-distance imaging will be particularly useful for understanding broadscale mineralogical distinctions between rocks as we traverse the crater rim. Such imaging has already proved extremely useful in the Neretva Vallis area, where at Alsap Butte we observed rocks that appeared similar to each other in initial imaging, but actually display an Andy-Warhol-esque array of color in multispectral products, indicative of varied mineral signatures.
Our next stop is Dox Castle where Perseverance will investigate the contact between the Margin Unit and the Crater rim, as well as rubbly material that may be our first encounter with deposits generated during the impact that created Jezero crater itself. Later in the campaign, we will investigate other light-toned outcrops that may or may not be similar to those encountered at Bright Angel, as well as rocks thought to be part of the regionally extensive olivine-carbonate-bearing unit, and whose relationship to both Séítah and the Margin Unit remains an interesting story to unravel. Throughout this next phase of exploration, comparing and contrasting the rocks we see on the rim to both each other and those previously explored in the mission will be an important part of our scientific investigations.
The whole Mars 2020 science team is incredibly excited to be embarking on the next phase of Perseverance’s adventure, and we expect these results, and the samples we collect along the way, to inform our understanding of not just Jezero itself, but the planet Mars as a whole. We can’t wait to share what we find!
Written by Eleni Ravanis, PhD Candidate and Graduate Research Assistant at University of Hawaiʻi at Mānoa
Share
Details
Last Updated Aug 27, 2024 Related Terms
Blogs Explore More
4 min read Sols 4284–4286: Environmental Science Extravaganza
Article
1 day ago
3 min read Sols 4282-4283: Bumping Away from Kings Canyon
Article
1 day ago
2 min read Sols 4280-4281: Last Call at Kings Canyon
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Personnel from the MSFC Earth Science Branch and local partners participated in the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS), and they are members of the IMPACTS team that recently won the prestigious Presidential Rank Group Achievement Award from NASA. IMPACTS was a highly successful NASA Earth Venture Suborbital airborne field campaign that examined why and how heavy snowfalls occur, as well as how NASA missions can better detect and measure these events. The suborbital mission had three flight campaigns in 2020, 2022, and 2023, and used the NASA ER-2 and P-3 aircraft. MSFC contributed the Advanced Microwave Precipitation Radiometer (AMPR) and the Lightning Instrument Package (LIP) to IMPACTS, and both instruments flew on the ER-2.
MSFC Earth science and engineering civil servants that contributed to IMPACTS over the years include Timothy Lang, Chris Schultz, Mason Quick, Rich Blakeslee (Emeritus), Paul Meyer (Emeritus), Patrick Duran, Eric Cantrell, Max Vankeuren, Kurt Dietz, David Hyde, Tom Phillips, Patrick Fulda, and Mark James. MSFC partners for IMPACTS included University of Alabama in Huntsville (UAH; Doug Huie, Jonathan Hicks, Julia Burton, Philip Alldredge, Dave Simmons, Sue O’Brien, Amanda Richter, Corey Amiot, Sebastian Harkema, Monte Bateman, Mike Stewart, Scott Podgorny, David Corredor, Dennis Buechler, Jeff Daskar, Dan Walker), Universities Space Research Association (USRA; Doug Mach), Jacobs (Mark Sloan, Lisa Gibby), and The Aerospace Corporation (Sayak Biswas). MSFC resource analyst support for IMPACTS was provided by Robyn Rudock, Jennifer Thovson, Jacob Guthrie,Chris Anthony, and Lisa Dorsett.
View the full article
-
By NASA
Main Takeaways:
New 66-foot-wide antenna dishes will be built, online, and operational in time to provide near-continuous communications services to Artemis astronauts at the Moon later this decade. Called LEGS, short for Lunar Exploration Ground Sites, the antennas represent critical infrastructure for NASA’s vision of supporting a sustained human presence at the Moon. The first three of six proposed LEGS are planned for sites in New Mexico, South Africa, and Australia. LEGS will become part of NASA’s Near Space Network, managed by the agency’s Space Communications and Navigation (SCaN) program and led out of Goddard Space Flight Center in Greenbelt, Maryland. Background:
NASA’s LEGS can do more than help Earthlings move about the planet.
Three Lunar Exploration Ground Sites, or LEGS, will enhance the Near Space Network’s communications services and support of NASA’s Artemis campaign.
NASA’s Space Communications and Navigation (SCaN) program maintains the agency’s two primary communications networks — the Deep Space Network and the Near Space Network, which enable satellites in space to send data back to Earth for investigation and discovery.
Using antennas around the globe, these networks capture signals from satellites, collecting data and enabling navigation engineers to track the mission. For the first Artemis mission, these networks worked in tandem to support the mission as it completed its 25-day journey around the Moon. They will do the same for the upcoming Artemis II mission.
To support NASA’s Moon to Mars initiative, NASA is adding three new LEGS antennas to the Near Space Network. As NASA works toward sustaining a human presence on the Moon, communications and navigation support will be crucial to each mission’s success. The LEGS antennas will directly support the later Artemis missions, and accompanying missions like the human landing system, lunar terrain vehicle, and Gateway.
The Gateway space station will be humanity’s first space station in lunar orbit as a vital component of the Artemis missions to return humans to the Moon for scientific discovery and chart a path for humans to Mars.NASA “One of the main goals of LEGS is to offload the Deep Space Network,” said TJ Crooks, LEGS project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The Near Space Network and its new LEGS antennas will focus on lunar missions while allowing the Deep Space Network to support missions farther out into the solar system — like the James Webb Space Telescope and the interstellar Voyager missions.”
The Near Space Network provides communications and navigation services to missions anywhere from near Earth to 1.2 million miles away — this includes the Moon and Sun-Earth Lagrange points 1 and 2. The Moon and Lagrange points are a shared region with the Deep Space Network, which can provide services to missions there and farther out in the solar system.
An artist’s rendering of a lunar terrain vehicle on the surface of the Moon.NASA The LEGS antennas, which are 66 feet in diameter, will be strategically placed across the globe. This global placement ensures that when the Moon is setting at one station, it is rising into another’s view. With the Moon constantly in sight, the Near Space Network will be able to provide continuous support for lunar operations.
How it Works:
As a satellite orbits the Moon, it encodes its data onto a radio frequency signal. When a LEGS antenna comes into view, that satellite (or rover, etc.) will downlink the signal to a LEGS antenna. This data is then routed to mission operators and scientists around the globe who can make decisions about spacecraft health and orbit or use the science data to make discoveries.
The LEGS antennas are intended to be extremely flexible for users. For LEGS-1, LEGS-2, and LEGS-3, NASA is implementing a “dual-band approach” for the antennas that will allow missions to communicate using two different radio frequency bands — X-band and Ka-band. Typically, smaller data packets — like telemetry data — are sent over X-band, while high-resolution science data or imagery needs Ka-band. Due to its higher frequency, Ka-band allows significantly more information to be downlinked at once, such as real-time high-resolution video in support of crewed operations.
LEGS will directly support the Artemis campaign, including the Lunar Gateway, human landing system (HLS), and lunar terrain vehicle (LTV).NASA Further LEGS capacity will be sought from commercial service providers and will include a “tri-band approach” for the antennas using S-band in addition to X- and Ka-band.
The first LEGS ground station, or LEGS-1, is at NASA’s White Sands Complex in Las Cruces, New Mexico. NASA is improving land and facilities at the complex to receive the new LEGS-1 antenna.
The LEGS-2 antenna will be in Matjiesfontein, South Africa, located near Cape Town. In partnership with SANSA, the South African National Space Agency, NASA chose this location to maximize coverage to the Moon. South Africa was home to a ground tracking station outside Johannesburg that played a role in NASA’s Apollo missions to the Moon in the 1960s. The agency plans to complete the LEGS-2 antenna in 2026. For LEGS-3, NASA is exploring locations in Western Australia.
These stations will fully complement the existing capabilities of the Near and Deep Space Networks and allow for more robust communications services to the Artemis campaign.
The LEGS antennas (similar in appearance to this 20.2-meter CPI Satcom antenna) will be placed in equidistant locations across the globe. This ensures that when the Moon is setting at one station, it will be rising into another’s view. With the Moon constantly in sight, NASA’s Near Space Network will be able to support approximately 24/7 operations with Moon-based missions.CPI Satcom CPI Satcom is building the Lunar Exploration Ground Site (LEGS) antennas for NASA. The antennas will look very similar to the 20-meter antenna pictured here. CPI Satcom The Near Space Network is funded by NASA’s Space Communications and Navigation (SCaN) program office at NASA Headquarters in Washington and operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
About the Author
Kendall Murphy
Technical WriterKendall Murphy is a technical writer for the Space Communications and Navigation program office. She specializes in internal and external engagement, educating readers about space communications and navigation technology.
5 Min Read Ground Antenna Trio to Give NASA’s Artemis Campaign ‘LEGS’ to Stand On
An artist’s rendering of astronauts working near NASA’s Artemis base camp, complete with a rover and RV. Credits: NASA Share
Details
Last Updated Jul 22, 2024 EditorKatherine SchauerContactKendall MurphyLocationGoddard Space Flight Center Related Terms
General Artemis Communicating and Navigating with Missions Space Communications & Navigation Program Space Communications Technology Explore More
2 min read Working in Tandem: NASA’s Networks Empower Artemis I
Article 2 years ago 3 min read NASA Laser Communications Terminal Delivered for Artemis II Moon Mission
The laser communications system for NASA’s Artemis II mission arrived at NASA’s Kennedy Space Center…
Article 1 year ago 4 min read NASA Search and Rescue Team Prepares for Safe Return of Artemis II Crew
When Artemis II NASA astronauts Reid Wiseman, Victor Glover, Christina Hammock Koch, and Canadian Space…
Article 12 months ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
ESA’s Hera mission is due to launch in October this year on a quest to survey the Didymos binary asteroid system and study the results of the first-ever test of asteroid deflection.
The spacecraft is currently undergoing its final system tests in the Netherlands in preparation for transport to its launch site in the USA. Meanwhile, in Germany, Hera’s Mission Control Team recently began launch preparations of their own.
View the full article
-
By USH
A recent summer hearing featured David Grusch, a former intelligence officer and whistleblower, who asserted that the government was withholding information, including evidence of "non-human biologics" retrieved from UFOs is determined to continue to get the truth out as he is admonishing Congress for what he says is a "total failure" to get more transparency about what the government knows about unidentified aerial phenomena.
Lawmakers took a step toward transparency by including in the annual defense funding bill a provision requiring disclosure of classified records relating to UAPs, but not before stripping out key portions of the measure.
Among them was a provision that aimed to establish an advisory board responsible for overseeing the disclosure of records. Unfortunately, this initiative is now postponed, as Grusch lamented, marking the failure of what was referred to as the "controlled disclosure campaign."
The apparent reason for the campaign's shortcomings is twofold. Firstly, influential individuals in positions of power with vested interests may adamantly refuse to disclose their knowledge, fearing potential consequences and the loss of accumulated power derived from years of concealing the UFO secret. Additionally, certain senators are impeding the disclosure process due to financial contributions from the military-industrial complex and defense contractors.
In essence, this situation not only raises concerns about the true extent of government transparency but also strongly suggests a significant cover-up.
The argument is clear: if there is nothing to hide, transparency and disclosure should pose no problem.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.