Members Can Post Anonymously On This Site
NASA Selects Consolidated Program Support Services Configuration and Data Management Contractor
-
Similar Topics
-
By NASA
The attacks of Sept. 11, 2001 were a national tragedy that resulted in a staggering loss of life and a significant change in American culture. Each year, we pause and remember. Beyond honoring the Americans who died that day, NASA also assisted FEMA in New York in the days afterward, and remembered the victims by providing flags flown aboard the Space Shuttle to their families.
NASA astronaut Jessica Meir photographed the New York City area from the International Space Station in March 2020. Credits: NASA European Space Agency astronaut Thomas Pesquet photographed the city Washington D.C. and the surrounding area on April 11, 2017, from his vantage point aboard the International Space Station. Credits: ESA/NASA Astronaut Frank Culbertson – The Only American Off the Planet
Expedition 3 Commander Frank Culbertson was aboard the International Space Station at the time of the attacks, and the only American on the crew. As soon as he learned of the attacks, he began documenting the event in photographs because the station was flying over the New York City area. He captured incredible images in the minutes and hours following the event. From his unique vantage point in space, he recorded his thoughts of the world changing beneath him.
Watch Video: Culbertson Remembers 9/11
The following day, he posted a public letter that captured his initial thoughts of the events as they unfolded. “The world changed today. What I say or do is very minor compared to the significance of what happened to our country today when it was attacked.”
Upon further reflection, Culbertson said, “It’s horrible to see smoke pouring from wounds in your own country from such a fantastic vantage point. The dichotomy of being on a spacecraft dedicated to improving life on the earth and watching life being destroyed by such willful, terrible acts is jolting to the psyche, no matter who you are.”
Read Culbertson’s Full Letter
Video: Station Astronauts Honor 9/11 Victims
Visible from space, a smoke plume rises from the Manhattan area after two planes crashed into the towers of the World Trade Center. This photo was taken of metropolitan New York City (and other parts of New York as well as New Jersey) the morning of September 11, 2001. Credits: NASA NASA Science Programs Monitor the Air
NASA science programs were called into action after Sept. 11, 2001, as the agency worked with FEMA to fly sensors over the affected areas on aircraft looking for aerial contaminants and used satellite resources to monitor from above.
Flags for Heroes and Families
View of New York City from orbit on Sept. 11, 2001. Credit: NASA/Frank Culbertson NASA flew nearly 6,000 4 by 6 inch flags on Endeavour’s flight during STS-108 to honor the victims of the terrorist attacks in New York, Washington, D.C. and Pennsylvania. Students working at Johnson Space Center in Houston, Texas assembled the commemorative packages, including the U.S. flags flown in space, to be presented to relatives of the victims. Distribution began on June 14, 2002, National Flag Day, at a ceremony held at the American Museum of Natural History’s Rose Center for Earth and Space in New York.
“The ‘Flags for Heroes and Families’ campaign is a way for us to honor and show our support for the thousands of brave men and women who have selflessly contributed to the relief and recovery efforts,” said then-NASA Administrator Dan Goldin. “The American flags are a patriotic symbol of our strength and solidarity, and our Nation’s resolve to prevail.”
“NASA wanted to come up with an appropriate tribute to the people who lost their lives in the tragic events of September 11,” added Goldin. “America’s space program has a long history of carrying items into space to commemorate historic events, acts of courage and dramatic achievements. ‘Flags for Heroes and Families’ is a natural extension of this ongoing outreach project.”
Read More About ‘Flags for Heroes and Families’→
Commemoration Goes to Mars
View of New York City from orbit on Sept. 11, 2001. Credit: NASA/Frank Culbertson In September 2001, Honeybee Robotics employees in lower Manhattan were building a pair of tools for grinding weathered rinds off rocks on Mars, so that scientific instruments on NASA’s Mars Exploration Rovers Spirit and Opportunity could inspect the rocks’ interiors.
That month’s attack on the twin towers of the World Trade Center, less than a mile away, shook the lives of the employees and millions of others.
Work on the rock abrasion tools needed to meet a tight schedule to allow thorough testing before launch dates governed by the motions of the planets. The people building the tools could not spend much time helping at shelters or in other ways to cope with the life-changing tragedy of Sept. 11. However, they did find a special way to pay tribute to the thousands of victims who perished in the attack.
An aluminum cuff serving as a cable shield on each of the rock abrasion tools on Mars was made from aluminum recovered from the destroyed World Trade Center towers. The metal bears the image of an American flag and fills a renewed purpose as part of solar system exploration.
One day, both rovers will be silent. In the cold, dry environments where they have worked on Mars, the onboard memorials to victims of the Sept. 11 attack could remain in good condition for millions of years.
Read More About the Rovers’ 9/11 Tribute
NASA Kennedy Adds Florida Touch to Sept. 11 Flag
The contributions of NASA and Kennedy Space Center were stitched into the fabric of one of the nation’s most recognizable symbols, when flags from Florida’s Spaceport were sewn into an American Flag recovered near ground zero following the Sept. 11, 2001, attacks.
The National 9/11 Flag was raised over the Rocket Garden at the Kennedy Space Center Visitor Complex after Florida’s contribution was added. Credits: NASA/Kim Shiflett “A few days after the collapse of the World Trade Center this flag was hanging on a scaffolding at 90 West Street, which was a building directly south of the World Trade Center that was heavily damaged when the south tower collapsed,” said Jeff Parness, director, founder and chairman of the “New York Says Thank You Foundation.”
The flag went on to become one of the most enduring symbols of the recovery from the attack. “The National 9/11 Flag” is a permanent part of the collection of the National September 11 Memorial Museum at the World Trade Center site. There, America’s flag can evoke a sense of pride, unity and hunger to keep achieving greatness, just as the nation’s space program has for more than half a century.
Read More
Video: Kennedy Adds Florida Touch to 9/11 Flag
View the full article
-
By NASA
5 Min Read 9 Phenomena NASA Astronauts Will Encounter at Moon’s South Pole
An artist’s rendering of an Artemis astronaut working on the Moon’s surface. Credits:
NASA NASA’s Artemis campaign will send the first woman and the first person of color to the Moon’s south polar region, marking humanity’s first return to the lunar surface in more than 50 years.
Here are some out-of-this-world phenomena Artemis astronauts will experience:
1. A Hovering Sun and Giant Shadows
This visualization shows the motions of Earth and the Sun as viewed from the South Pole of the Moon.
NASA’s Goddard Space Flight Center Near the Moon’s South Pole, astronauts will see dramatic shadows that are 25 to 50 times longer than the objects casting them. Why? Because the Sun strikes the surface there at a low angle, hanging just a few degrees above the horizon. As a result, astronauts won’t see the Sun rise and set. Instead, they’ll watch it hover near the horizon as it moves horizontally across the sky.
2. Sticky, Razor-Sharp Dust …
This dust particle came from a lunar regolith sample brought to Earth in 1969 by Apollo 11 astronauts. The particle is about 25 microns across, less than the width of an average human hair. The image was taken with a scanning electron microscope. The lunar dust, called regolith, that coats the Moon’s surface looks fine and soft like baking powder. But looks can be deceiving. Lunar regolith is formed when meteoroids hit the Moon’s surface, melting and shattering rocks into tiny, sharp pieces. The Moon doesn’t have moving water or wind to smooth out the regolith grains, so they stay sharp and scratchy, posing a risk to astronauts and their equipment.
3. … That’s Charged with Static Electricity
Astronaut Eugene Cernan, commander of Apollo 17, inside the lunar module on the Moon after his second moonwalk of the mission in 1972. His spacesuit and face are covered in lunar dust. Because the Moon has no atmosphere to speak of, its surface is exposed to plasma and radiation from the Sun. As a result, static electricity builds up on the surface, as it does when you shuffle your feet against a carpeted floor. When you then touch something, you transfer that charge via a small shock. On the Moon, this transfer can short-circuit electronics. Moon dust also can make its way into astronaut living quarters, as the static electricity causes it to easily stick to spacesuits. NASA has developed methods to keep the dust at bay using resistant textiles, filters, and a shield that employs an electric field to remove dust from surfaces.
4. A New Sense of Lightness
In 1972, Apollo 16 astronaut Charles Duke hammered a core tube into the Moon’s surface until it met a rock and wouldn’t go any farther. Then the hammer flew from his hand. He made four attempts to pick it up by bending down and leaning to reach for it. He gave up and returned to the rover to get tongs to finally pick up the hammer successfully.
NASA’s Johnson Space Center Artemis moonwalkers will have a bounce to their step as they traverse the lunar surface. This is because gravity won’t pull them down as forcefully as it does on Earth. The Moon is only a quarter of Earth’s size, with six times less gravity. Simple activities, like swinging a rock hammer to chip off samples, will feel different. While a hammer will feel lighter to hold, its inertia won’t change, leading to a strange sensation for astronauts. Lower gravity has perks, too. Astronauts won’t be weighed down by their hefty spacesuits as much as they would be on Earth. Plus, bouncing on the Moon is just plain fun.
5. A Waxing Crescent … Earth?
This animated image features a person holding a stick with a sphere on top that represents the Moon. The person is demonstrating an activity that helps people learn about the phases of the Moon by acting them out. NASA’s Jet Propulsion Laboratory When Artemis astronauts look at the sky from the Moon, they’ll see their home planet shining back at them. Just like Earthlings see different phases of the Moon throughout a month, astronauts will see an ever-shifting Earth. Earth phases occur opposite to Moon phases: When Earth experiences a new Moon, a full Earth is visible from the Moon.
6. An Itty-Bitty Horizon
A view from the Apollo 11 spacecraft in July 1969 shows Earth rising above the Moon’s horizon. NASA Because the Moon is smaller than Earth, its horizon will look shorter and closer. To someone standing on a level Earth surface, the horizon is 3 miles away, but to astronauts on the Moon, it’ll be only 1.5 miles away, making their surroundings seem confined.
7. Out-of-This-World Temperatures
This graphic shows maximum summer and winter temperatures near the lunar South Pole. Purple, blue, and green identify cold regions, while yellow to red signify warmer ones. The graphic incorporates 10 years of data from NASA’s LRO (Lunar Reconnaissance Orbiter), which has been orbiting the Moon since 2009.
NASA/LRO Diviner Seasonal Polar Data Because sunlight at the Moon’s South Pole skims the surface horizontally, it brushes crater rims, but doesn’t always reach their floors. Some deep craters haven’t seen the light of day for billions of years, so temperatures there can dip to minus 334 F. That’s nearly three times colder than the lowest temperature recorded in Antarctica. At the other extreme, areas in direct sunlight, such as crater rims, can reach temperatures of 130 F.
8. An Inky-Black Sky
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
An animated view of Earth emerging below the horizon as seen from the Moon’s South Pole. This visual was created using a digital elevation map from LRO’s laser altimeter, LOLA. NASA’s Scientific Visualization Studio The Moon, unlike Earth, doesn’t have a thick atmosphere to scatter blue light, so the daytime sky is black. Astronauts will see a stark contrast between the dark sky and the bright ground.
9. A Rugged Terrain
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
An overhead view of the Moon, beginning with a natural color from a distance and changing to color-coded elevation as the camera comes closer. The visual captures the rugged terrain of the lunar South Pole area. It includes a color key and animated scale bar. This visual was created using a digital elevation map from NASA LRO’s laser altimeter, LOLA. NASA’s Scientific Visualization Studio Artemis moonwalkers will find a rugged landscape that takes skill to traverse. The Moon has mountains, valleys, and canyons, but its most notable feature for astronauts on the surface may be its millions of craters. Near the South Pole, gaping craters and long shadows will make it difficult for astronauts to navigate. But, with training and special gear, astronauts will be prepared to meet the challenge.
By Avery Truman
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Sep 11, 2024 Related Terms
Artemis Earth’s Moon Exploration Systems Development Mission Directorate Humans in Space Missions NASA Directorates Planetary Science Division Science Mission Directorate The Solar System Explore More
5 min read Voyager 1 Team Accomplishes Tricky Thruster Swap
Article
21 hours ago
5 min read NASA’s Hubble, Chandra Find Supermassive Black Hole Duo
Article
2 days ago
2 min read NASA Summer Camp Inspires Future Climate Leaders
Article
5 days ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Tests on Earth appear to confirm how the Red Planet’s spider-shaped geologic formations are carved by carbon dioxide.
Spider-shaped features called araneiform terrain are found in the southern hemisphere of Mars, carved into the landscape by carbon dioxide gas. This 2009 image taken by NASA’s Mars Reconnaissance Orbiter shows several of these distinctive formations within an area three-quarters of a mile (1.2 kilometers) wide. NASA/JPL-Caltech/University of Arizona Dark splotches seen in this example of araneiform terrain captured by NASA’s Mars Reconnaissance Orbiter in 2018 are believed to be soil ejected from the surface by carbon dioxide gas plumes. A set of experiments at JPL has sought to re-create these spider-like formations in a lab. NASA/JPL-Caltech/University of Arizona Since discovering them in 2003 via images from orbiters, scientists have marveled at spider-like shapes sprawled across the southern hemisphere of Mars. No one is entirely sure how these geologic features are created. Each branched formation can stretch more than a half-mile (1 kilometer) from end to end and include hundreds of spindly “legs.” Called araneiform terrain, these features are often found in clusters, giving the surface a wrinkled appearance.
The leading theory is that the spiders are created by processes involving carbon dioxide ice, which doesn’t occur naturally on Earth. Thanks to experiments detailed in a new paper published in The Planetary Science Journal, scientists have, for the first time, re-created those formation processes in simulated Martian temperatures and air pressure.
Here’s a look inside of JPL’s DUSTIE, a wine barrel-size chamber used to simulate the temperatures and air pressure of other planets – in this case, the carbon dioxide ice found on Mars’ south pole. Experiments conducted in the chamber confirmed how Martian formations known as “spiders” are created.NASA/JPL-Caltech “The spiders are strange, beautiful geologic features in their own right,” said Lauren Mc Keown of NASA’s Jet Propulsion Laboratory in Southern California. “These experiments will help tune our models for how they form.”
The study confirms several formation processes described by what’s called the Kieffer model: Sunlight heats the soil when it shines through transparent slabs of carbon dioxide ice that built up on the Martian surface each winter. Being darker than the ice above it, the soil absorbs the heat and causes the ice closest to it to turn directly into carbon dioxide gas — without turning to liquid first — in a process called sublimation (the same process that sends clouds of “smoke” billowing up from dry ice). As the gas builds in pressure, the Martian ice cracks, allowing the gas to escape. As it seeps upward, the gas takes with it a stream of dark dust and sand from the soil that lands on the surface of the ice.
When winter turns to spring and the remaining ice sublimates, according to the theory, the spiderlike scars from those small eruptions are what’s left behind.
These formations similar to the Red Planet’s “spiders” appeared within Martian soil simulant during experiments in JPL’s DUSTIE chamber. Carbon dioxide ice frozen within the simulant was warmed by a heater below, turning it back into gas that eventually cracked through the frozen top layer and formed a plume.NASA/JPL-Caltech Re-Creating Mars in the Lab
For Mc Keown and her co-authors, the hardest part of conducting these experiments was re-creating conditions found on the Martian polar surface: extremely low air pressure and temperatures as low as minus 301 degrees Fahrenheit (minus 185 degrees Celsius). To do that, Mc Keown used a liquid-nitrogen-cooled test chamber at JPL, the Dirty Under-vacuum Simulation Testbed for Icy Environments, or DUSTIE.
“I love DUSTIE. It’s historic,” Mc Keown said, noting that the wine barrel-size chamber was used to test a prototype of a rasping tool designed for NASA’s Mars Phoenix lander. The tool was used to break water ice, which the spacecraft scooped up and analyzed near the planet’s north pole.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This video shows Martian soil simulant erupting in a plume during a JPL lab experiment that was designed to replicate the process believed to form Martian features called “spiders.” When a researcher who had tried for years to re-create these conditions spotted this plume, she was ecstatic. NASA/JPL-Caltech For this experiment, the researchers chilled Martian soil simulant in a container submerged within a liquid nitrogen bath. They placed it in the DUSTIE chamber, where the air pressure was reduced to be similar to that of Mars’ southern hemisphere. Carbon dioxide gas then flowed into the chamber and condensed from gas to ice over the course of three to five hours. It took many tries before Mc Keown found just the right conditions for the ice to become thick and translucent enough for the experiments to work.
Once they got ice with the right properties, they placed a heater inside the chamber below the simulant to warm it up and crack the ice. Mc Keown was ecstatic when she finally saw a plume of carbon dioxide gas erupting from within the powdery simulant.
“It was late on a Friday evening and the lab manager burst in after hearing me shrieking,” said Mc Keown, who had been working to make a plume like this for five years. “She thought there had been an accident.”
The dark plumes opened holes in the simulant as they streamed out, spewing simulant for as long as 10 minutes before all the pressurized gas was expelled.
The experiments included a surprise that wasn’t reflected in the Kieffer model: Ice formed between the grains of the simulant, then cracked it open. This alternative process might explain why spiders have a more “cracked” appearance. Whether this happens or not seems dependent on the size of soil grains and how embedded water ice is underground.
“It’s one of those details that show that nature is a little messier than the textbook image,” said Serina Diniega of JPL, a co-author of the paper.
What’s Next for Plume Testing
Now that the conditions have been found for plumes to form, the next step is to try the same experiments with simulated sunlight from above, rather than using a heater below. That could help scientists narrow down the range of conditions under which the plumes and ejection of soil might occur.
There are still many questions about the spiders that can’t be answered in a lab. Why have they formed in some places on Mars but not others? Since they appear to result from seasonal changes that are still occurring, why don’t they seem to be growing in number or size over time? It’s possible that they’re left over from long ago, when the climate was different on Mars— and could therefore provide a unique window into the planet’s past.
For the time being, lab experiments will be as close to the spiders as scientists can get. Both the Curiosity and Perseverance rovers are exploring the Red Planet far from the southern hemisphere, which is where these formations appear (and where no spacecraft has ever landed). The Phoenix mission, which landed in the northern hemisphere, lasted only a few months before succumbing to the intense polar cold and limited sunlight.
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2024-122
Share
Details
Last Updated Sep 11, 2024 Related Terms
Mars Jet Propulsion Laboratory Explore More
5 min read NASA JPL Scientists, Engineers Collaborate With Artists for Exhibition
Article 2 days ago 6 min read NASA’s Hubble, MAVEN Help Solve the Mystery of Mars’ Escaping Water
Mars was once a very wet planet as is evident in its surface geological features.…
Article 6 days ago 5 min read NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
NASA’s Stennis Space Center near Bay St. Louis, Mississippi, announced Wednesday it will continue its historic in-space autonomous systems payload mission aboard an orbiting satellite through a follow-on agreement with Sidus Space, Inc.
“We are excited to report the historic ASTRA (Autonomous Satellite Technology for Resilient Applications) mission will continue,” said Chris Carmichael, chief, Stennis Autonomous Systems Laboratory (ASL) branch at NASA Stennis. “We look forward to working with Sidus Space to demonstrate the capabilities of the NASA Stennis payload and our autonomous systems team.”
With this new agreement, the ASTRA payload will be used to collect onboard data on satellite systems and support management of the satellite’s Electrical Power System (EPS). The NASA Stennis ASTRA system will monitor and autonomously optimize the satellite’s battery system, ensuring the satellite continues to operate as needed for the course of its remaining mission lifetime. The ASTRA EPS management capability provides a new, innovative level of adaptability and efficiency for monitoring the satellite’s ongoing operations.
Developed by NASA Stennis to fly and demonstrate an autonomous systems hardware/software payload, ASTRA is the on-orbit mission. The NASA Stennis ASTRA technology demonstrator is a payload rider aboard the Sidus Space LizzieSat-1 (LS-1) small satellite. Partner Sidus Space is responsible for all LS-1 mission operations, including launch and satellite activation.
The LS-1 small satellite launched into space on the SpaceX Transporter 10 rideshare mission March 4 and deployed the same day. Following payload activation by Sidus Space, the NASA Stennis team worked with the company to establish a telemetry link to send and receive data in the ASTRA Payload Operation Command Center located at the NASA site. The ASL team continued to checkout and verify operation of ASTRA, confirming in early July that ASTRA primary mission objectives were successful.
The team is now focused on demonstrating autonomous system management as part of the LS-1 satellite’s planned four-year mission. “We are excited about the opportunity to continue this unprecedented mission,” Carmichael said. “Every step helps advance our autonomous systems work and lays a foundation for continued development and success.”
The NASA Stennis ASL team works to create safe-by-design autonomous systems. NASA’s ASTRA demonstrates technology that is required by NASA and industry for upcoming space missions. The ASTRA computer on the satellite runs a digital twin of key satellite systems, which identifies anomalies, and autonomously generates plans to resolve those issues.
The ongoing success of the ASTRA mission comes as NASA Stennis moves forward with strategic plans to design autonomous systems that will help accelerate development of intelligent aerospace systems and services for government and industry.
For information about NASA’s Stennis Space Center, visit:
https://www.nasa.gov/stennis
View the full article
-
By NASA
The four-person crew of the Polaris Dawn mission pictured wearing their SpaceX extravehicular activity suits.Credit: SpaceX NASA researchers will soon benefit from a suite of experiments flying aboard a new fully-commercial human spaceflight mission, strengthening future agency science as we venture to the Moon, Mars and beyond.
The experiments are flying as part of the Polaris Dawn mission which launched aboard a SpaceX Dragon spacecraft and Falcon 9 rocket earlier today.
The four-person Polaris Dawn crew of Jared Isaacman, Scott “Kidd” Poteet, Sarah Gillis, and Anna Menon will conduct science during the mission including essential health and human performance research for NASA’s Human Research Program. The research will help NASA scientists better understand how exposure to space conditions affects the human body. The crew will test new medical approaches and technology on telemedicine capabilities, gather data on space motion sickness, and better characterize flight-associated injury risks.
“Each mission, whether the crew is comprised of commercial or NASA astronauts, provides a key opportunity to expand our knowledge about how spaceflight affects human health,” said Jancy McPhee, associate chief scientist for human research at NASA. “Information gathered from Polaris Dawn will give us critical insights to help NASA plan for deeper space travel to the Moon and Mars.”
The crew will test drive, a commercial device that can collect and integrate measurements of health, including blood pressure, heart rate, respiration rate, and temperature. The technology also provides ultrasound imaging and larynx and throat-focused video camera capabilities, and includes an experimental telemedicine feature that could help diagnose crew members in near-real time.
To test this technology during the mission, crew members will compare vital sign collection from the device with data gathered from standard periodic health status exams. The technology’s telemedicine feature, which relies on SpaceX’s Starlink communications system to connect with doctors and specialists on Earth, will also be tested during a simulation. During the test, the device will attempt to offer an appropriate diagnosis based on crew inputs and available documentation.
“Crew members will need to be more self-reliant during lengthy missions, and we hope that telemedicine can provide crews with assistance,” said McPhee.
Another research project aims to better understand and prevent the motion sickness symptoms that many astronauts experience in space. Participating crew members will describe their motion sickness symptoms, what interventions they tried to alleviate their symptoms, and whether any approaches helped.
A separate NASA-based research project will survey crew members after their mission to see whether they experienced any injuries or discomfort during re-entry to Earth.
“Our team will take the crew’s survey data and combine it with information gathered from sensors on the spacecraft. This will allow us to link crews’ reported experiences and health outcomes with the spacecraft’s dynamics and landing loads,” said Preston Greenhalgh, an injury biomechanist at NASA who is leading this work.
Crew members also will participate in a variety of other health studies on behalf of the NASA-funded TRISH (Translational Research Institute for Health), a consortium with various academic institutions. As part of that work, the Polaris Dawn mission will set a new baseline for collecting standard health data on commercial spaceflights, creating a complement to the datasets routinely collected from NASA astronauts and missions.
Polaris Dawn crew members participating in these TRISH studies will provide data about how spaceflight affects mental and physical health through a rigorous set of medical tests and scans completed before, after, and during the mission. The work will include assessments of behavior, sleep, bone density, eye health, cognitive function, and other factors, as well as analysis of blood, urine, and respiration.
“We’re so grateful to the crew members who volunteer to be part of NASA’s work. The insights that we gain from each study may trigger breakthroughs that will help ensure future mission success,” said McPhee.
____
NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, commercial missions, and the International Space Station, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research continues to drive NASA’s mission to innovate ways that keep astronauts healthy and mission-ready as space exploration expands to the Moon, Mars, and beyond.
Explore More
3 min read NASA Astronaut Don Pettit’s Science of Opportunity on Space Station
Article 6 days ago 3 min read NASA, Boeing Optimizing Vehicle Assembly Building High Bay for Future SLS Stage Production
Article 2 weeks ago 4 min read NASA Seeks Input for Astrobee Free-flying Space Robots
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Living in Space
Artemis
Human Research Program
Space Station Research and Technology
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.