Members Can Post Anonymously On This Site
Forest measuring satellite passes tests with flying colours
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Two robotic arms wrapped in gold material sitting on top of a black and silver box.Naval Research Laboratory NASA and the Defense Advanced Research Projects Agency (DARPA) have signed an interagency agreement to collaborate on a satellite servicing demonstration in geosynchronous Earth orbit, where hundreds of satellites provide communications, meteorological, national security, and other vital functions.
Under this agreement, NASA will provide subject matter expertise to DARPA’s Robotic Servicing of Geosynchronous Satellites (RSGS) program to help complete the technology development, integration, testing, and demonstration. The RSGS servicing spacecraft will advance in-orbit satellite inspection, repair, and upgrade capabilities.
NASA is excited to support our long-term partner and advance important technologies poised to benefit commercial, civil, and national objectives. Together, we will make meaningful, long-lasting contributions to the nation’s in-space servicing, assembly, and manufacturing (ISAM) capabilities.
Pam Melroy
NASA Deputy Administrator
NASA will use expertise from the agency’s On-orbit Servicing, Assembly, and Manufacturing 1 project and other relevant efforts to provide hands-on support to RSGS in the areas of space robotics, systems engineering, spacecraft subsystems, integration and testing, operator training, and spaceflight operations. NASA’s involvement in RSGS will continue advancing the agency’s understanding of and experience with complex ISAM systems.
DARPA will continue to lead the RSGS program, which has already achieved several important milestones, including the completion of two dexterous robotic arms designed for inspection and service that have been stress-tested for an on-orbit environment and the integration of those arms with their associated electronics, tools, and ancillary hardware to produce the fully integrated robotic payload.
Media Contact: Jasmine Hopkins
Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Space Tech Topics
STMD Solicitations and Opportunities
Robotics
Technology Transfer & Spinoffs
Artemis
Share
Details
Last Updated Sep 05, 2024 EditorLoura Hall Related Terms
Space Technology Mission Directorate Technology View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
More than 100 scientists will participate in a field campaign involving a research vessel and two aircraft this month to verify the accuracy of data collected by NASA’s new PACE satellite: the Plankton, Aerosol, Cloud, ocean Ecosystem mission. The process of data validation includes researchers comparing PACE data with data collected by similar, Earth-based instruments to ensure the measurements match up. Since the mission’s Feb. 8, 2024 launch, scientists around the world have successfully completed several data validation campaigns; the September deployment — PACE-PAX — is its largest. From sea to sky to orbit, a range of vantage points allow NASA Earth scientists to collect different types of data to better understand our changing planet. Collecting them together, at the same place and the same time, is an important step used to verify the accuracy of satellite data.
NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite launched in February 2024 and is collecting observations of the ocean and measuring atmospheric particle and cloud properties. This data will help inform scientists and decision makers about the health of Earth’s ocean, land surfaces, and atmosphere and the interactions between them.
Technicians work to process the NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) observatory on a spacecraft dolly in a high bay at the Astrotech Space Operations Facility near the agency’s Kennedy Space Center in Florida on Monday, Dec. 4, 2023. Credit: NASA/Kim Shiflett To make sure the data from PACE’s instruments accurately represent the ocean and the atmosphere, scientists compare (or “validate”) the data collected from orbit with measurements they collect at or near Earth’s surface. The mission’s biggest validation campaign, called PACE Postlaunch Airborne eXperiment (PACE-PAX), began on Sept. 3, 2024, and will last the entire month.
“If we want to have confidence in the observations from PACE, we need to validate those observations,” said Kirk Knobelspiesse, mission scientist for PACE-PAX and an atmospheric scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This field campaign is focused on doing just that.”
Scientists will make measurements both from aircraft and ships. Based out of three locations across California — Marina, Santa Barbara, and NASA’s Armstrong Flight Research Center in Edwards — the campaign includes more than 100 people working in the field and several dozen instruments.
“This campaign allows us to validate data for both the atmosphere and the ocean, all in one campaign,” said Brian Cairns, deputy mission scientist for PACE-PAX and an atmospheric scientist at NASA’s Goddard Institute for Space Studies in New York City.
On the ocean, ships, including the National Oceanic and Atmospheric Administration (NOAA) research vessel Shearwater, will gather data on ocean biology and the optical properties of the water. Scientists onboard will gather water samples to help define the types of phytoplankton at different locations and their relative abundance, something that PACE’s hyperspectral Ocean Color Instrument measures from orbit.
Members of the PACE-PAX team – from left to right, Cecile Carlson, Adam Ahern (NOAA), Dennis Hamaker (NPS), Luke Ziemba, and Michael Shook (NASA Langley Research Center) – in front of the Twin Otter aircraft as they prep for the start of the campaign. Credit: Judy Alfter/NASA Overhead, a Twin Otter research aircraft operated by the Naval Postgraduate School in Monterey, California, will collect data on the atmosphere. At altitudes of up to 10,000 feet, the aircraft will sample and measure cloud droplet sizes, aerosol sizes, and the amount of light that those particles scatter and absorb. These are the atmospheric properties that PACE observes with its two polarimeters, SPEXOne and HARP2.
At a higher altitude — approximately 70,000 feet up — NASA’s ER-2 aircraft will provide a complementary view from above clouds, looking down on the atmosphere and ocean in finer detail than the satellite, but with a narrower view.
The NASA ER-2 high-altitude aircraft preparing for flight on Jan. 29, 2023. The aircraft is based at NASA’s Armstrong Flight Research Center Building 703 in Palmdale, California.Credit: NASA/Carla Thomas The plane will carry several instruments that are similar to those on PACE, including two prototypes of PACE’s polarimeters, called SPEXAirborne and AirHARP. In addition, two instruments called the Portable Remote Imaging SpectroMeter and Pushbroom Imager for Cloud and Aerosol Research and Development — from NASA’s Jet Propulsion Laboratory in Pasedena, California, and NASA’s Ames Research Center in California’s Silicon Valley, respectively — will measure essentially all the wavelengths of visible light (color). The remote sensing measurements are key for scientists who want to test the methods they use to analyze PACE satellite data.
Together, the instruments on the ER-2 approximate the data that PACE gathers and complement the in situ measurements from the ocean research vessel and the Twin Otter.
As the field campaign team gathers data, PACE will be observing the same areas of the ocean surface and atmosphere. Once the campaign is over, scientists will look at the data PACE returned and compare them to the measurements they took from the other three vantage points.
“Once you launch the satellite, there’s no more tinkering you can do,” said Ivona Cetinic, deputy mission scientist for PACE-PAX and an ocean scientist at NASA Goddard.
Though the scientists cannot alter the satellite anymore, the algorithms designed to interpret PACE data can be adjusted to make the measurements more accurate. Validation checks from campaigns like PACE-PAX help scientists ensure that PACE will be able to return accurate data about our oceans and atmosphere — critical to better understand our changing planet and its interconnected systems — for years to come.
“The ocean and atmosphere are such changing environments that it’s really important to validate what we see,” Cetinic said. “Understanding the accuracy of the view from the satellite is important, so we can use the data to answer important questions about climate change.”
By Erica McNamee
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Sep 04, 2024 EditorKate D. RamsayerContactErica McNameeerica.s.mcnamee@nasa.govLocationGoddard Space Flight Center Related Terms
Earth Airborne Science Goddard Space Flight Center PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Explore More
5 min read New NASA Satellite To Unravel Mysteries About Clouds, Aerosols
Article 9 months ago 6 min read NASA Wants to Identify Phytoplankton Species from Space. Here’s Why.
Article 1 year ago 4 min read NASA’s PACE Data on Ocean, Atmosphere, Climate Now Available
Article 5 months ago View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Dash 7 aircraft that will be modified into a hybrid electric research vehicle under NASA’s Electrified Powertrain Flight Demonstration project is seen taking off from Moses Lake, Washington en route to Seattle for a ceremony unveiling its new livery. The aircraft is currently operating with a traditional fuel-based propulsion system but will eventually be modified with a hybrid electric system. NASA / David C. Bowman Parked under the lights inside a hangar in Seattle, a hybrid electric research aircraft from electric motor manufacturer magniX showed off a new look symbolizing its journey toward helping NASA make sustainable aviation a reality.
During a special unveiling ceremony hosted by magniX on Aug. 22, leaders from the company and NASA revealed the aircraft, with its new livery, to the public for the first time at King County International Airport, commonly known as Boeing Field.
The aircraft is a De Havilland Dash 7 that was formerly used for carrying cargo. Working under NASA’s Electrified Powertrain Flight Demonstration (EPFD) project, magniX will modify it to serve as a testbed for hybrid electric aircraft propulsion research.
The company’s goal under EPFD is to demonstrate potential fuel savings and performance boosts with a hybrid electric system for regional aircraft carrying up to 50 passengers. These efforts will help reduce environmental impacts from aviation by lowering greenhouse gas emissions.
This livery recognizes the collaborative effort focused on proving that hybrid electric flight for commercial aircraft is feasible.
“We are a research organization that continues to advance aviation, solve the problems of flight, and lead the community into the future,” said Robert A. Pearce, associate administrator for NASA’s Aeronautics Research Mission Directorate. “Through our EPFD project, we’re taking big steps in partnership to make sure electric aviation is part of the future of commercial flight.”
Lee Noble, director for NASA’s Integrated Aviation Systems Program (right) and Robert Pearce, associate administrator for NASA’s Aeronautics Research Mission Directorate (middle) chat with an AeroTEC test pilot for the Dash 7. Battery packs are stored along the floor of the cabin for magniX’s hybrid electric flight demonstrationsNASA / David C. Bowman Collaborative Effort
NASA is collaborating with industry to modify existing planes with new electrified aircraft propulsion systems. These aircraft testbeds will help demonstrate the benefits of hybrid electric propulsion systems in reducing fuel burn and emissions for future commercial aircraft, part of NASA’s broader mission to make air travel more sustainable.
“EPFD is about showing how regional-scale aircraft, through ground and flight tests, can be made more sustainable through electric technology that is available right now,” said Ben Loxton, vice president for magniX’s work on the EPFD project.
Thus far, magniX has focused on developing a battery-powered engine and testing it on the ground to make sure it will be safe for work in the air. The company will now begin transitioning over to a new phase of the project — transforming the Dash 7 into a hybrid electric research vehicle.
“With the recent completion of our preliminary design review and baseline flight tests, this marks a transition to the next phase, and the most exciting phase of the project: the modification of this Dash 7 with our magniX electric powertrain,” Loxton said.
To make this possible, magniX is working with their airframe integrator AeroTEC to help modify and prepare the aircraft for flight tests that will take place out of Moses Lake, Washington. Air Tindi, which supplied the aircraft to magniX for this project, will help with maintenance and support of the aircraft during the testing phases.
The Dash 7 that will be modified into a hybrid electric research vehicle under NASA’s Electrified Powertrain Flight Demonstration project on display with its new livery for the first time. In front of the plane is an electric powertrain that magniX will integrate into the current aircraft to build a hybrid electric propulsion system.NASA/David C. Bowman Creating a Hybrid Electric Aircraft
A typical hybrid electric propulsion system combines different sources of energy, such as fuel and electricity, to power an aircraft. For magniX’s demonstration, the modified Dash 7 will feature two electric engines fed by battery packs stored in the cabin, and two gas-powered turboprops.
The work will begin with replacing one of the aircraft’s outer turboprop engines with a new, magni650-kilowatt electric engine – the base of its hybrid electric system. After testing those modifications, magniX will swap out the remaining outer turboprop engine for an additional electric one.
Earlier this year, magniX and NASA marked the milestone completion of successfully testing the battery-powered engine at simulated altitude. Engineers at magniX are continuing ground tests of the aircraft’s electrified systems and components at NASA’s Electric Aircraft Testbed (NEAT) facility in Sandusky, Ohio.
By rigorously testing these new technologies under simulated flight conditions, such as high altitudes and extreme temperatures, researchers can ensure each component operates safely before taking to the skies.
The collaboration between EPFD, NASA, GE Aerospace, and magniX works to advance hybrid electric aircraft propulsion technologies for next-generation commercial aircraft in the mid-2030 timeframe. NASA is working with these companies to conduct two flight demonstrations showcasing different approaches to hybrid electric system design.
Researchers will use data gathered from ground and flight tests to identify and reduce certification gaps, as well as inform the development of new standards and regulations for future electrified aircraft.
“We at NASA are excited about EPFD’s potential to make aviation more sustainable,” Pearce said. “Hybrid electric propulsion on a megawatt scale accelerates U.S. progress toward its goal of net-zero greenhouse gas emissions by 2050, benefitting all who rely on air transportation every day.”
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
2 min read NASA G-IV Plane Will Carry Next-Generation Science Instrument
Article 6 days ago 2 min read NASA Develops Pod to Help Autonomous Aircraft Operators
Article 1 week ago 2 min read NASA Composite Manufacturing Initiative Gains Two New Members
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Sep 03, 2024 EditorJim BankeContactMichael Jorgensen Related Terms
Aeronautics Aeronautics Research Mission Directorate Electrified Powertrain Flight Demo Glenn Research Center Green Aviation Tech Integrated Aviation Systems Program View the full article
-
By NASA
2 min read
Hubble Observes An Oddly Organized Satellite
NASA, ESA, and E. Skillman (University of Minnesota – Twin Cities; Processing: Gladys Kober (NASA/Catholic University of America) Andromeda III is one of at least 13 dwarf satellite galaxies in orbit around the Andromeda galaxy, or Messier 31, the Milky Way’s closest grand spiral galactic neighbor. Andromeda III is a faint, spheroidal collection of old, reddish stars that appears devoid of new star formation and younger stars. In fact, Andromeda III seems to be only about 3 billion years younger than the majority of globular clusters ― dense knots of stars thought to have been mostly born at the same time, which contain some of the oldest stars known in the universe.
Astronomers suspect that dwarf spheroidal galaxies may be leftovers of the kind of cosmic objects that were shredded and melded by gravitational interactions to build the halos of large galaxies. Curiously, studies have found that several of the Andromeda Galaxy’s dwarf galaxies, including Andromeda III, orbit in a flat plane around the galaxy, like the planets in our solar system orbit around the Sun. The alignment is puzzling because models of galaxy formation don’t show dwarf galaxies falling into such orderly formations, but rather moving around the galaxy randomly in all directions. As they slowly lose energy, the dwarf galaxies merge into the larger galaxy.
The odd alignment could be because many of Andromeda’s dwarf galaxies fell into orbit around it as a single group, or because the dwarf galaxies are scraps left over from the merger of two larger galaxies. Either of these theories, which are being researched via NASA’s James Webb Space Telescope, would complicate theories of galaxy formation but also help guide and refine future models.
NASA’s Hubble Space Telescope took this image of Andromeda III as part of an investigation into the star formation and chemical enrichment histories of a sample of M31 dwarf spheroidal galaxies that compared their first episodes of star formation to those of Milky Way satellite galaxies.
Download Image
Explore More
Hubble’s Galaxies
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, MD
claire.andreoli@nasa.gov
Share
Details
Last Updated Aug 29, 2024 Editor Michelle Belleville Location NASA Goddard Space Flight Center Related Terms
Astrophysics Galaxies Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From NASA
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble Science
Hubble’s Galaxies
Stars
View the full article
-
By NASA
4 Min Read NASA Seeks Input for Astrobee Free-flying Space Robots
iss069e010815 (May 16, 2023) — UAE (United Arab Emirates) astronaut and Expedition 69 Flight Engineer Sultan Alneyadi observes a free-flying Astrobee robotic assistant during the testing of its operations for an upcoming student competition to control the robotic devices. Credits: NASA NASA is seeking input from American companies for the operation and use of a system of free-flying robots aboard the International Space Station as the agency continues to foster scientific, educational, and technological developments in low Earth orbit for the benefit of all.
The colorful, cube-shaped robots – named “Bumble,” “Honey,” and “Queen” – are part of the Astrobee system helping astronauts and researchers perform technology demonstrations, scientific research, and STEM (science, technology, engineering and mathematics) activities in the unique environment of space since 2018.
“Dozens of institutions collaborate with NASA to use the Astrobee system to test new hardware and software technologies,” said Jose Benavides, project manager for the Astrobee facilities at NASA’s Ames Research Center in California’s Silicon Valley, where the system was designed and built. “I’m excited to hear how respondents think Astrobee can continue to advance robotics in space.”
NASA issued a Request for Information to inform strategic planning, inviting industry to provide information to help shape the maturation of robotics in zero gravity to achieve the greatest scientific and exploration value. Responses are due Sept. 27, 2024. To learn more about the Request for Information, visit:
https://sam.gov/opp/7893fe01e7bf4ae69029b5d8915e62c5/view
iss065e389375 (9/20/2021) — NASA astronaut Shane Kimbrough poses with the Astrobee robotic free-flyers in support of the Kibo Robot Programming Challenge (Robo-Pro Challenge). The Kibo-RPC, allows students to create programs to control Astrobee, a free-flying robot aboard the International Space Station (ISS). The battery-powered robots in the Astrobee system fly around the space station’s modules using electric fans for propulsion and “see” their surroundings using lights, cameras, and other sensors. They have interchangeable “arms” that provide ways for the robots to hold objects or keep steady for tasks requiring stability, and magnets to ensure they stay securely docked when recharging.
Working autonomously, or via remote control by astronauts, flight controllers, or researchers on the ground, the robots can be used to off-load time-consuming tasks. For instance, the robots can work independently or collaboratively to assist with routine chores like space station monitoring, maintenance, inventory, experiment documentation, or moving cargo throughout the station. This allows astronauts more time to tackle complex work that only humans can perform.
Astrobee’s versatile design has allowed thousands of hours of testing on hundreds of microgravity experiments. Many have involved astronauts, but the facility also is regularly used by researchers and student teams across the world competing for the opportunity to run their programs on the robots in space.
Further developing human-robotic technology will pave the way for future crewed and uncrewed spacecraft maintenance and exploration tasks done by robots both off-planet and in deep space"
Jonathan Barlow
Astrobee Project Manager
For example, NASA’s ISAAC (Integrated System for Autonomous and Adaptive Caretaking) project, used the Astrobees to study how robots could assist spacecraft, vehicle systems, and ground operators. The technology could help NASA use robot caretakers for critical spacecraft in the agency’s Moon-to-Mars plans, including the Gateway lunar space station and Mars transit habitat vehicle, especially during the months-long periods when these spacecraft will be uncrewed.
“Our ISAAC work has proved out its technology in a high-fidelity space environment because of the ready availability of the capable Astrobee robots,” said Trey Smith, project manager for ISAAC at NASA Ames.
The project demonstrated using multiple Astrobees to autonomously collect the first robot-generated survey of a spacecraft interior. Other ISAAC firsts include the first use of a robot to locate the source of a sound in space, in collaboration with the Bosch USA SoundSee payload team, and the first time robots navigated between modules of a space station. Future robots could use ISAAC technology to transfer cargo between space vehicles or respond to a time-critical fault like a leak due to a micrometeoroid impact, all without human assistance.
“With Astrobee, we’ve learned about flying multiple robots in space alongside humans,” said Jonathan Barlow, project manager for Astrobee at NASA Ames. “Further developing human-robotic technology will pave the way for future crewed and uncrewed spacecraft maintenance and exploration tasks done by robots both off-planet and in deep space.”
The Astrobee Facility, operated out of NASA’s Ames Research Center, provides a free-flying robotic system for space station research and STEM outreach. NASA’s Game Changing Development Program, part of the agency’s Space Technology Mission Directorate, funded Astrobee. NASA’s International Space Station Utilization Office provides ongoing funding.
iss071e464314 (Aug. 12, 2024) — NASA astronaut and Expedition 71 Flight Engineer Jeanette Epps monitors a pair of Astrobee robotic free-flying assistants as they demonstrate autonomous docking maneuvers inside the International Space Station’s Kibo laboratory module. The cube-shaped, toaster-sized devices were operating with a connecting interface system, called CLINGERS with an embedded navigation sensor, that may benefit construction in space.View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.