Jump to content

Recommended Posts

  • Publishers
Posted
California's San Francisco Bay Area as seen from the International Space Station orbiting 260 miles above. The water is slate gray, while the surrounding land is in shades of brown, deep green, and gray.
NASA/Nichole Ayers

NASA astronaut Nichole Ayers took this photo of California’s San Francisco Bay Area surrounded by the cities of San Francisco, Oakland, and San Jose, and their suburbs on Aug. 3, 2025. At the time, the International Space Station orbited 260 miles above the Golden State.

The International Space Station serves as a unique platform for observing Earth with both hands-on and automated equipment. Station crew members have produced hundreds of thousands of images, recording phenomena such as storms in real time, observing natural events such as volcanic eruptions as they happen, and providing input to ground personnel for programming automated Earth-sensing systems.

In its third decade of continuous human presence, the space station has a far-reaching impact as a microgravity lab hosting technology, demonstrations, and scientific investigations from a range of fields. The research done on the orbiting laboratory will inform long-duration missions like Artemis and future human expeditions to Mars.

Learn more about Earth observation from the space station.

Image credit: NASA/Nichole Ayers

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ResilienX employees Angelo Niforatos, left, and Ryan Pleskach, right, overview the NASA safety tools integrated into the company’s commercial system, July 11, 2025, at the ResilienX Headquarters in Syracuse, New York. Credit: ResilienX A future with advanced air mobility aircraft populating the skies will require the U.S. to implement enhanced preflight planning that can mitigate potential risks well before takeoff – and NASA is working to develop the tools to make that happen. 
      Preflight planning is critical to ensuring safety in the complex, high-risk environments of the future airspace. Timely, predictive, and up-to-date risk assessment within a single platform makes it much easier for drone or air taxi operators to check flight plans for high-risk concerns.  
      NASA is working on tools to deliver those services, and in June, the agency and aviation safety company ResilienX Inc. demonstrated how these tools can be integrated into commercial systems.  
      During a series of tests conducted at ResilienX’s facility in Syracuse, New York, researchers used NASA services that allowed flight operators to submit flight plans prior to departure, obtain risk assessment results, and then decide whether to proceed with flights or change their flight plans and re-assess risks. Allowing operators to perform these tasks quickly reduces the safety risk to flight passengers as well as humans on the ground. 
      The three NASA-developed services are intended to assess unique risks associated with highly automated aircraft flying at low altitudes over cities.  
      The partnership was managed under a Phase III NASA Small Business Innovation Research (SBIR) contract, which is an extension of prior work to assess weather-related risks. This collaboration is already leading to direct technology transfer of safety systems into ResilienX’s platform. The partnership is also intended to provide indirect benefits for ResilienX partners and customers, such as the U.S. Air Force and regional operators, helping to advance the overall safety of future airspace operations.  
      This work is led by NASA’s System-Wide Safety project under the Airspace Operations and Safety program in support of the agency’s Advanced Air Mobility mission. The mission seeks to deliver data, findings, and recommendations to guide the industry’s development of future air taxis and drones. 
      Share
      Details
      Last Updated Aug 22, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
      Armstrong Flight Research Center Advanced Air Mobility Aeronautics Aeronautics Research Mission Directorate Airspace Operations and Safety Program Drones & You Small Business Innovation Research / Small Business System-Wide Safety Explore More
      5 min read National Aviation Day: Celebrating NASA’s Heritage While Charting Our Future
      Article 3 days ago 5 min read NASA Invites You to Celebrate National Aviation Day 2025
      Article 3 days ago 4 min read NASA Tests Research Aircraft to Improve Air Taxi Flight Controls
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Image: This Copernicus Sentinel-2 image showcases striking rocky formations amid the blue waters of Halong Bay in northeast Vietnam. View the full article
    • By NASA
      NASA/Michala Garrison, USGS The OLI (Operational Land Imager) on Landsat 8 captured an image of Kachemak Bay’s turbid, cloudy waters on September 20, 2024. This cloudiness comes from glacial flour: bits of pulverized rock ground down by glaciers that has the consistency of flour. Several meltwater streams rich with the particles, sometimes called suspended sediment, absorb and scatter sunlight in ways that turn water a milky blue-green hue. The water that flows into the bay from the Grewingk-Yalik Glacier Complex to the east carries sediment-infused waters that transform the appearance of the bay during the summer, raising questions about how much the influx of sediment affects the bay’s marine life.
      Learn more about efforts to study Kachemak Bay’s sediment plumes.
      Text credit: Adam Voiland
      Image credit: NASA/Michala Garrison, USGS
      View the full article
    • By European Space Agency
      Image: With the festive season approaching, even Earth-observing satellites are getting into the spirit, capturing a stunning compilation of European cities that resemble stars. View the full article
    • By NASA
      NASA/Kim Shiflett In this image from Dec. 11, 2024, the 212-foot-tall SLS (Space Launch System) core stage is lowered into High Bay 2 at the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. With the move to High Bay 2, NASA and Boeing technicians now have 360-degree access to the core stage both internally and externally.
      The Artemis II test flight, targeted for launch in 2026, will be NASA’s first mission with crew under the Artemis campaign. NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, will go on a 10-day journey around the Moon and back.
      Image credit: NASA/Kim Shiflett
      View the full article
  • Check out these Videos

×
×
  • Create New...