Members Can Post Anonymously On This Site
Artemis II Core Stage Moves to High Bay 2
-
Similar Topics
-
By NASA
NASA/Frank Michaux NASA’s iconic “worm” insignia stands out in this photo taken on Jan. 24, 2025, as engineers and technicians prepared to lift the left center center booster segment for the agency’s SLS (Space Launch System) rocket. The boosters will help support the remaining rocket components and the Orion spacecraft during final assembly of the Artemis II Moon rocket and provide more than 75 percent of the total SLS thrust during liftoff from Launch Complex 39B at NASA’s Kennedy Space Center in Florida.
Get more Artemis II news.
Image credit: NASA/Frank Michaux
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
Sols 4437-4438: Coordinating our Dance Moves
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on sol 4435 — Martian day 4,435 of the Mars Science Laboratory mission — on Jan. 27, 2025, at 02:23:35 UTC. NASA/JPL-Caltech Earth planning date: Monday, Jan. 27, 2025
I was Geology and Mineralogy (Geo) Science Team lead today, and my day started with a bang and a drum roll — delivered by a rare winter thunderstorm (rare here in England, at least). I did lose power for a few minutes, but thanks to laptop batteries and phone Wi-Fi, I think no one noticed … so, shhh, don’t tell the boss!
Planning was especially interesting as we had a decision to make, whether we want to align ChemCam and APXS observations with each other and focus on one target, or whether we want two different targets. As Geo Science Team lead, it is my role to facilitate this discussion, but that is always fun — and easy. Many colleagues come with well-prepared reasons for why they want to have a certain observation in today’s plan, and I always learn something new about Mars, or geology, or both when those discussions happen. Weighing all arguments carefully, we decided for the coordinated dance of contact and remote science observations on a bedrock target we named “Desert View.” APXS will start the dance, followed by ChemCam active and one RMI image on the same location. Closing out the dance will be MAHLI, by imaging the APXS target that at this point will have the laser pits.
Such a coordinated observation will allow us to see how the rock reacts to the interaction with the laser. We have done this many times, and often learnt interesting things about the mineralogy of the rock. But more than 10 years ago, there was an even more ambitious coordination exercise: On sol 687 the imaging on a target called “Nova” was timed so that Mastcam actually captured the laser spark in the image. While that’s useful for engineering purposes, as a mineralogist I want to see the effect on the rock. Here is the result of that “spark” on target Nova on sol 687.
But back to today’s planning. Apart from the coordinated observations, ChemCam also adds to the Remote Micro Imager coverage of Gould Mesa with a vertical RMI observation that is designed to cover all the nice layers in the mesa, just like a stratigraphic column. Mastcam is looking back at the Rustic Canyon crater to get a new angle. Craters are three-dimensional and looking at it from all sides will help decipher the nature of this small crater, and also make full use of the window into the underground that it offers. Mastcam has two more mosaics, “Condor Peak” and “Boulder Basin,” which are both looking at interesting features in the landscape: Condor Peak at a newly visible butte, and Boulder Basin at bedrock targets in the near-field, to ascertain the structures and textures are still the same as they have been, or document any possible changes. Mars has surprised us before, so we try to look as often as power and other resources allow, even if only to confirm that nothing has changed. You can see the blocks that we are using for this observation in the grayscale Navigation Camera image above; we especially like it when upturned blocks give us a different view, while flat lying blocks in the same image show the “regular” perspective.
After the targeted science is completed, the rover will continue its drive along the planned route, to see what Mars has to offer on the next stop. After the drive, MARDI will take its image, and ChemCam do an autonomous observation, picking its own target. Also after the drive is a set of atmospheric observations to look at dust levels and search for dust devils. Continuous observations throughout include the DAN instrument’s observation of the surface and measurements of wind and temperature.
With that, the plan is again making best use of all the power we have available… and here in England the weather has improved, inside my power is back to normal, and outside it’s all back to the proverbial rain this small island is so famous for.
Written by Susanne Schwenzer, Planetary Geologist at The Open University
Share
Details
Last Updated Jan 29, 2025 Related Terms
Blogs Explore More
2 min read Sols 4434-4436: Last Call for Clouds
Article
2 days ago
3 min read What ‘Perseverance’ Means on Mars and for Our NASA Family
Article
5 days ago
3 min read Sols 4431-4433: On the rim of ‘Rustic Canyon’
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Engineers and technicians with NASA’s Exploration Ground Systems Program integrate the right forward center segment onto mobile launcher 1 inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Wednesday, Jan. 22, 2025. The boosters will help support the remaining rocket components and the Orion spacecraft during final assembly of the Artemis II Moon rocket and provide more than 75 percent of the total SLS (Space Launch System) thrust during liftoff from NASA Kennedy’s Launch Pad 39BNASA/Kim Shiflett Teams with NASA’s Exploration Ground Systems Program continue stacking the SLS (Space Launch System) rocket’s twin solid rocket booster motor segments for the agency’s Artemis II mission, inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida.
Currently, six of the 10 segments are secured atop mobile launcher 1 with the right forward center segment as the latest addition. Teams will continue integrating the booster stack – the left center center segment adorned with the NASA “worm” insignia is the next segment to be integrated.
The right and left forward assemblies were brought to the VAB from the spaceport’s Booster Fabrication Facility on Jan. 14. The forward assemblies are comprised of three parts: the nose cone which serves as the aerodynamic fairing; a forward skirt, which house avionics; and the frustum which houses motors that separates the boosters from the SLS core stage during flight. The remaining booster segments will be transported from the Rotation, Processing, and Surge Facility to the VAB when engineers are ready to integrate them. The forward assemblies will be the last segments integrated to complete the booster configuration, ahead of integration with the core stage.
Image Credit: NASA/Kim Shiflett
View the full article
-
By NASA
Artist’s rendering of astronauts managing logistics on the lunar surface. Credit: NASA NASA awarded new study contracts Thursday to help support life and work on the lunar surface. As part of the agency’s blueprint for deep space exploration to support the Artemis campaign, nine American companies in seven states are receiving awards.
The Next Space Technologies for Exploration Partnerships Appendix R contracts will advance learning in managing everyday challenges in the lunar environment identified in the agency’s Moon to Mars architecture.
“These contract awards are the catalyst for developing critical capabilities for the Artemis missions and the everyday needs of astronauts for long-term exploration on the lunar surface,” said Nujoud Merancy, deputy associate administrator, Strategy and Architecture Office at NASA Headquarters in Washington. “The strong response to our request for proposals is a testament to the interest in human exploration and the growing deep-space economy. This is an important step to a sustainable return to the Moon that, along with our commercial partners, will lead to innovation and expand our knowledge for future lunar missions, looking toward Mars.”
The selected proposals have a combined value of $24 million, spread across multiple companies, and propose innovative strategies and concepts for logistics and mobility solutions including advanced robotics and autonomous capabilities:
Blue Origin, Merritt Island, Florida – logistical carriers; logistics handling and offloading; logistics transfer; staging, storage, and tracking; surface cargo and mobility; and integrated strategies Intuitive Machines, Houston, Texas – logistics handling and offloading; and surface cargo and mobility Leidos, Reston, Virginia – logistical carriers; logistics transfer; staging, storage, and tracking; trash management; and integrated strategies Lockheed Martin, Littleton, Colorado – logistical carriers; logistics transfer; and surface cargo and mobility MDA Space, Houston – surface cargo and mobility Moonprint, Dover, Delaware – logistical carriers Pratt Miller Defense, New Hudson, Michigan – surface cargo and mobility Sierra Space, Louisville, Colorado – logistical carriers; logistics transfer; staging, storage, and tracking; trash management; and integrated strategies Special Aerospace Services, Huntsville, Alabama – logistical carriers; logistics handling and offloading; logistics transfer; staging, storage, and tracking; trash management; surface cargo and mobility; and integrated strategies NASA is working with industry, academia, and the international community to continuously evolve the blueprint for crewed exploration and taking a methodical approach to investigating solutions that set humanity on a path to the Moon, Mars, and beyond.
For more on NASA’s mission to return to the Moon, visit:
https://www.nasa.gov/humans-in-space/artemis
-end-
Cindy Anderson / James Gannon
Headquarters, Washington
202-358-1600
cindy.a.anderson@nasa.gov / james.h.gannon@nasa.gov
Share
Details
Last Updated Jan 23, 2025 LocationNASA Headquarters Related Terms
Artemis Exploration Systems Development Mission Directorate Humans in Space NASA Headquarters View the full article
-
By NASA
Jon Carabello has spent his entire career at TURBOCAM, which produces 10 core stage main engine turbomachinery components for the RS-25 main engine on NASA’s SLS (Space Launch System) heavy lift exploration rocket.Photo: TURBOCAM Jon Carabello did not begin his career journey with an eye on space, but when NASA’s Artemis lunar exploration campaign came calling, he was all in.
Born, raised, and college-educated in New Hampshire, Carabello has spent his entire professional career at TURBOCAM – a turbomachinery development and manufacturing company – in the southeast corner of the Granite State.
That’s a long way from the southern and western states commonly associated with U.S. human spaceflight activities.
Asked about his early memories of America’s space program, Carabello mentions movies like Apollo 13, and notes that Christa McAulliffe, the teacher-astronaut who died in the 1986 Space Shuttle Challenger accident, taught high school in New Hampshire.
Little did he know that his future employer, a maker of complex machined hardware for a variety of industrial applications, has long been a component supplier to programs including the Space Shuttle and the International Space Station.
There was never much question that Carabello, who started tinkering with engines and other machinery at a young age, would make a career of mechanical engineering. “I like to solve problems – that’s my big thing,” he says.
He learned about TURBOCAM when company representatives made a presentation to his University of New Hampshire engineering class. “That’s how I figured out I knew wanted to work at TURBOCAM and work with 5-axis machining,” he says. “Machining amazes me.”
Five axis machine tools can machine metal blanks from multiple angles to create geometrically complex parts for industrial hardware. TURBOCAM produces 10 core stage main engine turbomachinery components for the RS-25 main engine on NASA’s SLS (Space Launch System) heavy lift exploration rocket. L3Harris Technologies is the prime contractor for the RS-25 engines.
It was his fascination with machining rather than the opportunity to work on rocket engines that drew Carabello to TURBOCAM, where he initially worked on machinery for the oil and gas industry, heating and air conditioning systems, and aerospace.
But then one day, a supervisor asked him to take over the company’s RS-25 portfolio. He remembers the conversion quite clearly.
“It was a Thursday afternoon,” he says. “I was sitting in my office and my manager came in and said, ‘we have somebody leaving and need someone to take over project management and ownership of the RS-25.’ I said, ‘yes’ and he said, ‘you have a call with the program tomorrow.’ That was about five years ago.”
It was a significant change, but Carabello knew the company needed his problem-solving skills on the RS-25 program. “I know how to bring a team together to deliver a quality product. It’s rewarding to know I’m helping return humans to the Moon and paving the way to Mars with the Artemis campaign.”
Self-confidence notwithstanding, Carabello admits to being a bit nervous given that NASA astronauts will be relying on his work. That point was driven home when NASA and L3Harris representatives visited TURBOCAM in the spring of 2024 for a series of presentations on Artemis. The remark that resonated with him the most was by NASA astronaut Dr. Lee Morin, who said the most important part of any human spaceflight mission is bringing astronauts safely home.
“That meant a lot to me,” says Carabello, whose team is responsible for all aspects of TURBOCAM’S RS-25 effort, including quality control, inspection, and resource allocation. He is constantly reminding his team of what’s really at stake for astronauts bound for space: “We’re helping them to return home,” he says.
Read other I am Artemis features.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.