Members Can Post Anonymously On This Site
AI’s rapid rise: A ticking time bomb for humanity!
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Communities in coastal areas such as Florida, shown in this 1992 NASA image, are vulnerable to the effects of sea level rise, including high-tide flooding. A new agency-led analysis found a higher-than-expected rate of sea level rise in 2024, which was also the hottest year on record.NASA Last year’s increase was due to an unusual amount of ocean warming, combined with meltwater from land-based ice such as glaciers.
Global sea level rose faster than expected in 2024, mostly because of ocean water expanding as it warms, or thermal expansion. According to a NASA-led analysis, last year’s rate of rise was 0.23 inches (0.59 centimeters) per year, compared to the expected rate of 0.17 inches (0.43 centimeters) per year.
“The rise we saw in 2024 was higher than we expected,” said Josh Willis, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California. “Every year is a little bit different, but what’s clear is that the ocean continues to rise, and the rate of rise is getting faster and faster.”
This graph shows global mean sea level (in blue) since 1993 as measured by a series of five satellites. The solid red line indicates the trajectory of this increase, which has more than doubled over the past three decades. The dotted red line projects future sea level rise.NASA/JPL-Caltech In recent years, about two-thirds of sea level rise was from the addition of water from land into the ocean by melting ice sheets and glaciers. About a third came from thermal expansion of seawater. But in 2024, those contributions flipped, with two-thirds of sea level rise coming from thermal expansion.
“With 2024 as the warmest year on record, Earth’s expanding oceans are following suit, reaching their highest levels in three decades,” said Nadya Vinogradova Shiffer, head of physical oceanography programs and the Integrated Earth System Observatory at NASA Headquarters in Washington.
Since the satellite record of ocean height began in 1993, the rate of annual sea level rise has more than doubled. In total, global sea level has gone up by 4 inches (10 centimeters) since 1993.
This long-term record is made possible by an uninterrupted series of ocean-observing satellites starting with TOPEX/Poseidon in 1992. The current ocean-observing satellite in that series, Sentinel-6 Michael Freilich, launched in 2020 and is one of an identical pair of spacecraft that will carry this sea level dataset into its fourth decade. Its twin, the upcoming Sentinel-6B satellite, will continue to measure sea surface height down to a few centimeters for about 90% of the world’s oceans.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This animation shows the rise in global mean sea level from 1993 to 2024 based on da-ta from five international satellites. The expansion of water as it warms was responsible for the majority of the higher-than-expected rate of rise in 2024.NASA’s Scientific Visualization Studio Mixing It Up
There are several ways in which heat makes its way into the ocean, resulting in the thermal expansion of water. Normally, seawater arranges itself into layers determined by water temperature and density. Warmer water floats on top of and is lighter than cooler water, which is denser. In most places, heat from the surface moves very slowly through these layers down into the deep ocean.
But extremely windy areas of the ocean can agitate the layers enough to result in vertical mixing. Very large currents, like those found in the Southern Ocean, can tilt ocean layers, allowing surface waters to more easily slip down deep.
The massive movement of water during El Niño — in which a large pool of warm water normally located in the western Pacific Ocean sloshes over to the central and eastern Pacific — can also result in vertical movement of heat within the ocean.
Learn more about sea level:
https://sealevel.nasa.gov
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2025-036
Share
Details
Last Updated Mar 13, 2025 Related Terms
Sentinel-6 Michael Freilich Satellite Climate Science Jet Propulsion Laboratory Oceans Explore More
6 min read Cosmic Mapmaker: NASA’s SPHEREx Space Telescope Ready to Launch
Article 6 days ago 5 min read NASA Turns Off 2 Voyager Science Instruments to Extend Mission
Article 1 week ago 3 min read University High Knows the Answers at NASA JPL Regional Science Bowl
Article 1 week ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
James Gentile always wanted to fly. As he prepared for an appointment to the U.S. Air Force Academy to become a pilot, life threw him an unexpected curve: a diagnosis of Type 1 diabetes. His appointment was rescinded.
With his dream grounded, Gentile had two choices—give up or chart a new course. He chose the latter, pivoting to aerospace engineering. If he could not be a pilot, he would design the flight simulations that trained those who could.
Official portrait of James Gentile. NASA/Robert Markowitz As a human space vehicle simulation architect at NASA’s Johnson Space Center in Houston, Gentile leads the Integrated Simulation team, which supports the Crew Compartment Office within the Simulation and Graphics Branch. He oversees high-fidelity graphical simulations that support both engineering analysis and flight crew training for the Artemis campaign.
His team provides critical insight into human landing system vendor designs, ensuring compliance with NASA’s standards. They also develop human-in-the-loop simulations to familiarize teams with the challenges of returning humans to the lunar surface, optimizing design and safety for future space missions.
“I take great pride in what I have helped to build, knowing that some of the simulations I developed have influenced decisions for the Artemis campaign,” Gentile said.
One of the projects he is most proud of is the Human Landing System CrewCo Lander Simulation, which helps engineers and astronauts tackle the complexities of lunar descent, ascent, and rendezvous. He worked his way up from a developer to managing and leading the project, transforming a basic lunar lander simulation into a critical tool for the Artemis campaign.
What began as a simple model in 2020 is now a key training asset used in multiple facilities at Johnson. The simulation evaluates guidance systems and provides hands-on piloting experience for lunar landers.
James Gentile in the Simulation Exploration and Analysis Lab during a visit with Apollo 16 Lunar Module Pilot Charlie Duke. From left to right: Katie Tooher, Charlie Duke, Steve Carothers, Mark Updegrove, and James Gentile. NASA/James Blair Before joining Johnson as a contractor in 2018, Gentile worked in the aviation industry developing flight simulations for pilot training. Transitioning to the space sector was challenging at first, particularly working alongside seasoned professionals who had been part of the space program for years.
“I believe my experience in the private sector has benefited my career,” he said. “I’ve been able to bring a different perspective and approach to problem-solving that has helped me advance at Johnson.”
Gentile attributes his success to never being afraid to speak up and ask questions. “You don’t always have to be the smartest person in the room to make an impact,” he said. “I’ve been able to show my value through my work and by continuously teaching myself new skills.”
As he helps train the Artemis Generation, Gentile hopes to pass on his passion for aerospace and simulation development, inspiring others to persevere through obstacles and embrace unexpected opportunities.
“The most important lessons I’ve learned in my career are to build and maintain relationships with your coworkers and not to be afraid to step out of your comfort zone,” he said.
James Gentile with his son at NASA’s Johnson Space Center during the 2024 Bring Youth to Work Day. His journey did not go as planned, but in the end, it led him exactly where he was meant to be—helping humanity take its next giant leap.
“I’ve learned that the path to your goals may not always be clear-cut, but you should never give up on your dreams,” Gentile said.
View the full article
-
By European Space Agency
Europe’s newest rocket, Ariane 6, took flight for the second time from Europe’s Spaceport in French Guiana at 13:24 local time on 6 March (16:24 GMT, 17:24 CET). This was the first commercial flight for Ariane 6, flight VA263, delivering the CSO-3 satellite to orbit. Arianespace was the operator and launch service provider for the French Procurement agency (DGA) and France’s space agency CNES on behalf of the French Air and Space Force’s Space Command (CDE).
View the full article
-
By European Space Agency
Europe’s newest rocket, Ariane 6, took flight for the second time from Europe’s Spaceport in French Guiana at 13:24 local time on 6 March (16:24 GMT, 17:24 CET). This was the first commercial flight for Ariane 6, flight VA263, delivering the CSO-3 satellite to orbit. Arianespace was the operator and launch service provider for the French Procurement agency (DGA) and France’s space agency CNES on behalf of the French Air and Space Force’s Space Command (CDE).
View the full article
-
By NASA
Portrait of John Boyd, whose contributions to NASA spanned more than 70 years.Credit: NASA John Boyd, known to many as Jack and whose career spanned more than seven decades in a multitude of roles across NASA as well as its predecessor, the National Advisory Committee for Aeronautics (NACA), died Feb. 20. He was 99. Born in 1925, and raised in Danville, Virginia, he was a long-time resident of Saratoga, California.
Boyd is being remembered by many across the agency, including Dr. Eugene Tu, director, NASA’s Ames Research Center in California’s Silicon Valley, where Boyd spent most of his career.
“Jack brought an energy, optimism, and team-based approach to solving some of the greatest technological challenges humanity has ever faced, which remains part of our culture to this day,” said Tu. “There are few careers as wide-ranging and impactful as Jack’s.”
In 1947, Boyd began his career at the then-called Ames Aeronautical Laboratory in Moffett Field, California, as an aeronautical engineer working to design and test various wing shapes using the center’s 1-by-3-foot supersonic wind tunnel. Boyd continued conducting research in wind tunnels, testing designs that led to dramatic increases in the efficiency of the supersonic B-58 bomber, as well as the F-102 and F-106 fighters.
In 1958, just before Ames became part of a newly established NASA, Boyd recalled thinking, “Maybe someday we’ll go out into the far blue yonder, and if we do, what are we going to fly? How are we going to bring it back into the atmosphere safely?” He and a team of engineers turned their attention to studying the dynamics of high-speed projectiles in hypervelocity ranges, filled with different mixtures of gases to mimic the atmospheres of Mars and Venus, in preparation for sending spacecraft out into space and safely back again or to the surface of other worlds.
By the mid-60s, Boyd was promoted into leadership and tapped to become deputy director for Aeronautics and Flight Systems at NASA Ames. In the late 1960s, as America was redefining its space exploration goals and sending humans to the Moon, Boyd served as the center’s lead to assist NASA Headquarters in Washington consolidate and create new research programs.
In 1979, Boyd served as the deputy director at NASA’s Dryden Flight Research Center (now known as NASA’s Armstrong Flight Research Center) in Edwards, California, and prepared the center for its role as a landing site for the space shuttle. He briefly returned to Ames before heading to NASA Headquarters to be associate administrator for management under James M. Beggs. Boyd left government service in 1985, taking a position as chancellor for research and an adjunct professor of aerodynamics, engineering, and the history of spaceflight for the University of Texas System.
Boyd returned to NASA and California’s Silicon Valley in 1993,inspiring students through educational outreach initiatives, and serving as the senior advisor to the director, senior advisor for history, and the center ombudsman until his retirement in 2020.
Boyd credits his interest in airplanes to a cousin who was a paratrooper and gave him a ride in a biplane in the 1940s. In 1943, he enrolled and became the first in his family to earn a degree with a bachelor of science in aeronautical engineering from Virginia Polytechnic Institute and State University in Blacksburg, Virginia. He was a recipient of the NASA Exceptional Service Award, the NASA Outstanding Leadership Award, the NASA Equal Employment Opportunity Medal, the Presidential Rank of Meritorious Executive, the NASA Distinguished Service Medal, the Army Command Medal, and the NASA Headquarters History Award. He also was a Fellow of the American Institute of Aeronautics and Astronautics and a Sloan Fellow at Stanford University.
“The agency and the nation thank and honor Jack as a member of the NASA family and the highest exemplar of a public servant who believed investing in others is the greatest contribution one can make,” added Tu. “He will be deeply missed.”
For more information about NASA Ames, visit:
https://www.nasa.gov/ames
-end-
Cheryl Warner
Headquarters, Washington
202-358-1600
cheryl.m.warner@nasa.gov
Rachel Hoover
Ames Research Center, Silicon Valley
650-604-4789
rachel.hoover@nasa.gov
Share
Details
Last Updated Feb 26, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Ames Research Center Aeronautics Armstrong Flight Research Center NASA Headquarters National Advisory Committee for Aeronautics (NACA) View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.