Members Can Post Anonymously On This Site
Human System Risk Board
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
In-person participants (L-R) – Back row: Jason Lytle, Stuart Lee, Eric Bershad, Ashot Sargsyan, Aaron Everson, Philip Wells, Sergi Vaquer Araujo, Steven Grover, John A. Heit, Mehdi Shishehbor, Laura Bostick; Middle row: Sarah Childress Taoufik, Stephan Moll, Brandon Macias, Kristin Coffey, Ann-Kathrin Vlacil, Dave Francisco; Front row: James Pavela, Doug Ebert, Kathleen McMonigal, Esther Kim, Emma Hwang; Not pictured: Tyson Brunstetter, J. D. Polk
Online participants: Stephen Alamo, Mark Crowther, Steven Nissen, Mark Rosenberg, Jeffrey Weitz, R. Eugene Zierler, Serena Aunon, Tina Bayuse, Laura Beachy, Becky Brocato, Daniel Buckland, Jackie Charvat, Diana Cruz Topete, Quinn Dufurrena, Robert Haddon, Joanne Kaouk, Kim Lowe, Steve Laurie, Karina Marshall-Goebel, Sara Mason, Shannan Moynihan, James Pattarini, Devan Petersen, Ruth Reitzel, Donna Roberts, Lucia Roccaro, Mike Stenger, Terry Taddeo, Gavin Travers, Mary Van Baalen, Liz WarrenNASA In October 2024, NASA’s Office of the Chief Health and Medical Officer (OCHMO) initiated a working group to review the status and progress of research and clinical activities intended to mitigate the risk of venous thromboembolism (VTE) during spaceflight. The working group took place over two days at NASA’s Johnson Space Center; a second meeting on the topic was held in December 2024 at the European Space Agency (ESA) facility in Cologne, Germany.
Read More about the Risk of VTE The working group was assembled from internal NASA subject matter experts (SMEs), the NASA OCHMO Standards Team, NASA and ESA stakeholders, and external SMEs, including physicians and medical professionals from leading universities and medical centers in the United States and Canada.
Background
Spaceflight Venous Thrombosis (SVT)
Spaceflight Venous Thrombosis (SVT) refers to a phenomenon experienced during spaceflight in which a thrombus (blood clot) forms in the internal jugular vein (and/or associated vasculature) that may be symptomatic (thrombus accompanied by, but not limited to, visible internal jugular vein swelling, facial edema beyond “nominal” spaceflight adaptation, eyelid edema, and/or headache) or asymptomatic. Obstructive thrombi have been identified in a very small number of crewmembers, as shown in the figure below.
Note that the figure below is for illustrative purposes only; locations are approximate, and size is not to scale.
Approximate location of identified thrombi in crewmembers.Source: Modified from Cerebral Sinus Venous Thrombosis – University of Colorado Denver With treatment, crewmembers were able to complete their mission, and anticoagulants were discontinued several days prior to landing to minimize the risk of bleeding in the event of a traumatic injury. Some thromboses completely resolved post landing, and some required additional treatment.
Pathophysiology of Venous Thromboembolism (VTE)
The proposed pathogenesis of VTE is referred to as Virchow’s triad and suggests that VTE occurs as the result of:
Alterations in blood flow (i.e., stasis), Vascular endothelial injury/changes, and/or, Alterations in the constituents of the blood leading to hypercoagulability (i.e., hereditary predisposition or acquired hypercoagulability). Note: pathophysiology are the changes that occur during a disease process; hypercoagulability is the increased tendency to develop blood to clots.
The Virchow’s triad of risk factors for venous thrombosis.Bouchnita, 2017 Blood stasis, or venous stasis, refers to a condition in which the blood flow in the veins slows down which leads to pooling in the veins. This slowing of the blood may be due to vein valves becoming damaged or weak, immobility, and/or the absence of muscular contractions. Associated symptoms include swelling, skin changes, varicose veins, and slow-healing sores or ulcers. In terrestrial medicine, venous thrombosis is typically caused by damaged or weakened vein valves, which can be due to many factors, including aging, blood clots, varicose veins, obesity, pregnancy, sedentary lifestyle, estrogen use, and hereditary predisposition.
Spaceflight Considerations
Altered Venous Blood Flow and Spaceflight Associated Neuro-ocular Syndrome
In addition to the terrestrial risk factors of VTE, there are physiological changes associated with spaceflight that are hypothesized to potentially play a role in the development of VTE in weightlessness. Specifically, researchers have explored the effects of the microgravity environment and subsequent observed headward fluid shifts that occur, and the potential impact on blood flow. Crewmembers onboard the International Space Station (ISS) experience weightlessness due to the microgravity environment and thus experience a sustained redistribution of bodily fluids from the legs toward the head. The prolonged headward fluid shifts during weightlessness results in facial puffiness, decreased leg volume, increased cardiac stroke volume, and decreased plasma volume.
Crewmembers have also experienced altered blood flow during spaceflight, including retrograde venous blood flow (RVBF) (the backflow of venous blood towards the brain) or stasis (a stoppage or slowdown in the flow of blood). While the causes of the observed stasis and retrograde blood flow in spaceflight participants is not well understood, the potential clinical significance of the role it may have in the development of thrombus formation warrants further investigation.
Doppler imaging of a retrograde flow in the left internal jugular vein.Yan & Seow, 2009 Other physiological concerns affected by fluid shifts are being studied to consider if any relation to VTE exists. Chronic weightlessness can cause bodily fluids such as blood and cerebrospinal fluid to move toward the head, which can lead to optic nerve swelling, folds in the retina, flattening of the back of the eye, and swelling in the brain. This collection of eye and brain changes is called “spaceflight associated neuro-ocular syndrome,” or SANS. Some astronauts only experience mild changes in space, while others have clinically significant outcomes. The long-term health outcome from these changes is unknown but actively being investigated. The risk of developing SANS is higher during longer-duration missions and remains a top research priority for scientists ahead of a Mars mission.
Conclusions and Further Work
Based on expert opinion and the assessment of the risk factors for thrombosis, an algorithm was developed to provide guidance for in-mission assessment and treatment of thrombus formation in weightlessness. The algorithm is based on early in-flight ultrasound testing to determine the flow characteristic of the left internal jugular vein and associated vasculature.
NASA Working Group Recommendations
The working group recommended several areas for further investigation to assess feasibility and potential to mitigate the risk of thrombosis in spaceflight:
Improved detection capabilities to identify when a thrombus has formed in-flight, Pathophysiology/factors leading to thrombi formation during spaceflight, Countermeasures and treatment
For more information on the working group meeting and a complete list of references, please see the Risk of Venous Thromboembolism (VTE) During Spaceflight Summary Report.
Risk of Venous Thromboembolism (VTE) During Spaceflight Summary Report Share
Details
Last Updated Mar 14, 2025 EditorKim Lowe Related Terms
Office of the Chief Health and Medical Officer (OCHMO) Astronauts General Human Health and Performance Humans in Space The Human Body in Space Keep Exploring Discover Related Topics
OCHMO Independent Assessments
Independent assessment plays a crucial role in NASA’s long-term success by addressing essential questions requiring rapid response to support further…
Aerospace Medical Certification Standard
This NASA Technical Standard provides medical requirements and clinical procedures designed to ensure crew health and safety and occupational longevity…
Human Spaceflight Standards
The Human Spaceflight & Aviation Standards Team continually works with programs to provide the best standards and implementation documentation to…
Human Spaceflight and Aviation Standards
The Human Spaceflight and Aviation Standards Team continuously works with subject matter experts and with each space flight program to…
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The space shuttle Endeavour is seen on launch pad 39a as a storm passes by prior to the rollback of the Rotating Service Structure (RSS), Thursday, April 28, 2011, at Kennedy Space Center in Cape Canaveral, Fla. During the 14-day mission, Endeavour and the STS-134 crew will deliver the Alpha Magnetic Spectrometer (AMS) and spare parts including two S-band communications antennas, a high-pressure gas tank and additional spare parts for Dextre. Launch is targeted for Friday, April 29 at 3:47 p.m. EDT.NASA It is important to protect humans from unintended electrical current flow during spaceflight. The thresholds for contact electrical shock are well established, and standards and requirements exist that minimize the probability of contact electrical shock. Current thresholds were chosen (vs. voltage thresholds) because body impedance varies depending on conditions such as wet/dry, AC/DC, voltage level, large/small contact area, but current thresholds and physiological effects do not change. By addressing electrical thresholds, engineering teams are able to provide the appropriate hazard controls, usually through additional isolation (beyond the body’s impedance), current limiters, and/or modifying the voltage levels. Risk assessment determined that the probability of an event was extremely low, and the most serious consequence is expected to be involuntary muscle contraction.
Lightning strikes the Launch Pad 39B protection system as preparations for launch of NASA’s Space Launch System (SLS) rocket with the Orion spacecraft aboard continue, Saturday, Aug. 27, 2022, at NASA’s Kennedy Space Center in Florida. NASA’s Artemis I flight test is the first integrated test of the agency’s deep space exploration systems: the Orion spacecraft, SLS rocket, and supporting ground systems. Launch of the uncrewed flight test is targeted for no earlier than Aug. 29 at 8:33 a.m. ET. Photo Credit: (NASA/Bill Ingalls) Directed Acyclic Graph Files
+ DAG File Information (HSRB Home Page)
+ Electrical Shock Risk DAG and Narrative (PDF)
+ Electrical Shock Risk DAG Code (TXT)
Human System Risks Share
Details
Last Updated Mar 11, 2025 EditorRobert E. LewisLocationJohnson Space Center Related Terms
Human Health and Performance Human System Risks Explore More
1 min read Risk of Toxic Substance Exposure
Article 15 mins ago 1 min read Risk of Urinary Retention
Article 15 mins ago 1 min read Risk to Vehicle Crew Egress Capability and Task Performance as Applied to Earth and Extraterrestrial Landings
Article 14 mins ago Keep Exploring Discover More Topics From NASA
Humans In Space
Missions
International Space Station
Solar System
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Astronaut Mark Vande Hei swaps out components on an advanced new toilet installed inside the International Space Station.NASA Exposure to the altered gravity in the spaceflight environment may cause physiological changes. One of these changes is the inability to completely empty the bladder or urinary retention. Causes of urinary retention in the early phases of flight include altered baseline physiology seen with exposure to microgravity, the anticholinergic side effects of medications that are taken to combat space motion sickness, and other factors. Urinary retention may impact health on orbit by causing discomfort and increasing the risk of urinary tract infection. Treatment, including urethral catheterization, has been performed on orbit.
Directed Acyclic Graph Files
+ DAG File Information (HSRB Home Page)
+ Urinary Retention Risk DAG and Narrative (PDF)
+ Urinary Retention Risk DAG Code (TXT)
Human System Risks Share
Details
Last Updated Mar 11, 2025 EditorRobert E. LewisLocationJohnson Space Center Related Terms
Human Health and Performance Human System Risks Explore More
1 min read Risk to Crew Health Due to Electrical Shock (Electrical Shock Risk)
Article 15 mins ago 1 min read Risk to Vehicle Crew Egress Capability and Task Performance as Applied to Earth and Extraterrestrial Landings
Article 14 mins ago 1 min read Risk of Toxic Substance Exposure
Article 15 mins ago Keep Exploring Discover More Topics From NASA
Humans In Space
Missions
International Space Station
Solar System
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ESA (European Space Agency) astronaut and Expedition 67 Flight Engineer Samantha Cristoforetti works inside the International Space Station’s Unity module reconfiguring components for the Solid Fuel Ignition and Extinction investigation that explores fire growth and fire safety techniques in space.NASA Safe, breathable air is essential for crew health. Human spaceflight has involved toxicological events ranging in severity from trivial to life-threatening. Toxic exposure to chemical contaminants can originate from environmental system leaks, payload leaks, pyrolysis of polymeric materials, off-gassing of polymeric materials, use of utility compounds, propellant entry, microbial products, and human metabolism.
To ensure crew safety, these risks are mitigated by preventive measures aimed at reducing or eliminating toxic exposure events as well as by monitoring and intervention post-release to minimize impacts to crew and reduce impacts to crew health and performance as well as long-term health consequences.
Boeing team members don hazmat suits as they prepare for the landing of Boeing’s CST-100 Starliner spacecraft at White Sands Missile Range’s Space Harbor, Wednesday, May 25, 2022, in New Mexico. Boeing’s Orbital Flight Test-2 (OFT-2) is Starliner’s second uncrewed flight test to the International Space Station as part of NASA’s Commercial Crew Program. OFT-2 serves as an end-to-end test of the system’s capabilities. NASA Directed Acyclic Graph Files
+ DAG File Information (HSRB Home Page)
+ Toxic Exposure Risk DAG and Narrative (PDF)
+ Toxic Exposure Risk DAG Code (TXT)
Human System Risks Share
Details
Last Updated Mar 11, 2025 EditorRobert E. LewisLocationJohnson Space Center Related Terms
Human Health and Performance Human System Risks Explore More
1 min read Risk of Urinary Retention
Article 15 mins ago 1 min read Risk to Crew Health Due to Electrical Shock (Electrical Shock Risk)
Article 15 mins ago 1 min read Risk to Vehicle Crew Egress Capability and Task Performance as Applied to Earth and Extraterrestrial Landings
Article 14 mins ago Keep Exploring Discover More Topics From NASA
Humans In Space
Missions
International Space Station
Solar System
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Astronaut Serena M. Auñón-Chancellor Examines Her Eyes in SpaceNASA Exposure to altered gravity can cause ocular and brain structural changes to develop during spaceflight; these changes could lead to vision alterations, cognitive effects, or other deleterious health effects. SANS is a syndrome unique to humans that fly in space, and there is no terrestrial disease equivalent. Brain structural changes appear small but seem to indicate that over half of crewmembers experience one or more symptoms of SANS. Determining intracranial pressure during spaceflight could improve our understanding of SANS mechanisms and improve our ability to target countermeasures for determining risk for future missions.
NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts an ocular health exam on herself in the Destiny laboratory of the Earth-orbiting International Space Station. (NASA)NASA Directed Acyclic Graph Files
+ DAG File Information (HSRB Home Page)
+ SANS Risk DAG and Narrative (PDF)
+ SANS Risk DAG Code (TXT)
Human Research Roadmap
+ Risk of Spaceflight Associated Neuro-ocular Syndrome
+ 2022 April Evidence Report (PDF)
Human System Risks Share
Details
Last Updated Mar 11, 2025 EditorRobert E. LewisLocationJohnson Space Center Related Terms
Human Health and Performance Human System Risks Explore More
1 min read Risk of Toxic Substance Exposure
Article 15 mins ago 1 min read Risk of Urinary Retention
Article 15 mins ago 1 min read Risk to Crew Health Due to Electrical Shock (Electrical Shock Risk)
Article 15 mins ago Keep Exploring Discover More Topics From NASA
Humans In Space
Missions
International Space Station
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.