Members Can Post Anonymously On This Site
Sols 4473-4474: So Many Rocks, So Many Textures!
-
Similar Topics
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
Sols 4479-4480: What IS That Lumpy, Bumpy Rock?
NASA’s Mars rover Curiosity acquired this image of its workspace, including two rocks in front of it with interesting textures, different from anything seen before in the mission. The rover took the image with its Left Navigation Camera on March 12, 2025 — sol 4478, or Martian day 4,478 of the Mars Science Laboratory mission — at 07:00:42 UTC. NASA/JPL-Caltech Written by Ashley Stroupe, Mission Operations Engineer at NASA’s Jet Propulsion Laboratory
Earth planning date: Wednesday, March 12, 2025
The days are getting shorter and colder for Curiosity as we head into winter. So our rover is sleeping in a bit before waking up to a busy plan. Today I served as the Engineering Uplink Lead, managing the engineering side of the plan to support all the science activities.
We are seeing a lot of rocks with different, interesting textures, so Curiosity’s day begins with a lot of targeted imaging of this interesting area. The two rocks right in front of us (see image above) are different from anything that we have looked at before on the mission, so we are eager to know what they are. We are taking Mastcam images of “Manzana Creek” and “Palo Comado,” two of these interestingly textured rocks, and also of an area named “Vincent Gap,” where the rover disturbed some bedrock and exposed some regolith by driving over it in the prior plan. ChemCam is making a LIBS observation of a target called “Sturtevant Falls,” which is a nodule on the left-hand block in our workspace (on which we are later doing some contact science). ChemCam is also taking a long-distance RMI image in the direction of the potential boxworks formation (large veins), which is an area we will be exploring close-up in the future. There are also a Navcam dust devil movie and suprahorzion movie. Check out this article from November for more information on the boxwork formations.
After a nap, Curiosity wakes up to get in her arm exercise. I do not envy the Arm Rover Planner today (OK, maybe a little bit) in dealing with this very challenging workspace. The rock of interest (the left-hand rock in the above image) has jagged, vertical surfaces and a lot of crazy rough texture. Examining this rock is even more challenging because our primary targets are on the left side of the rock, rather than the side that is facing the rover. We are looking at two different targets, “Stunt Ranch,” which is a nodule on the rock, and “Pacifico Mountain,” which is the left-side face of the rock, with MAHLI and also doing a long APXS integration on Stunt Ranch. After the arm work, Curiosity is tucking herself in for the night by stowing the arm.
The next morning, after again getting to sleep in a bit, Curiosity will make some more targeted observations, starting with another dust-devil survey. ChemCam will make a LIBS observation of “Switzer Falls,” which is a target on the right-hand rock in the workspace (and in the image), an RMI of “Colby Canyon,” a soft sediment deformation, and “Gould,” which is another target on the boxworks formation. Lastly, Mastcam takes a look at “Potrero John,” yet another interestingly textured rock.
Curiosity will then be ready to drive away. Today’s drive is on slightly better terrain that we have been seeing recently, with fewer large and pointy rocks. Though, the mobility rover planners still have to be careful about picking the safest path through. We’re heading about 25 meters (about 82 feet) to another rock target named “Humber Park,” where we hope to do additional contact science. After the drive, we have our standard set of post-drive imaging, a Mastcam solar tau, and then an early-morning Navcam cloud observation.
Share
Details
Last Updated Mar 14, 2025 Related Terms
Blogs Explore More
2 min read Navigating a Slanted River
Article
1 day ago
2 min read Sols 4477-4478: Bumping Back to Business
Article
2 days ago
3 min read Sols 4475-4476: Even the Best-Laid Plans
Article
3 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Sols 4477-4478: Bumping Back to Business
NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on March 10, 2025 — sol 4476, or Martian day 4,476 of the Mars Science Laboratory mission — at 04:15:44 UTC. NASA/JPL-Caltech Written by Sharon Wilson Purdy, Planetary Geologist at the Smithsonian National Air and Space Museum
Earth planning date: Monday, March 10, 2025
The Curiosity rover is winding between the spectacular Gould mesa and Texoli butte through beautifully layered terrain. The end-of-drive target from last week’s plan was a rock with a knobby/bumpy texture that appears quite different from the typical surrounding bedrock. While this interesting rock was in our workspace today, we ended up being just a touch too close to do contact science. As a result, the science team decided to “bump back” (e.g., drive backwards) to get the rover in an ideal position to analyze and characterize this rock on Wednesday.
In the middle of the rover’s workspace today there was a large patch of soil and sand that MAHLI and APXS teamed up to analyze at a target named “Angeles Crest.” Nearby, Mastcam imaged troughs (depressions) along the axis of the sand ridge to understand how they formed. Mastcam had several other targets in the plan that imaged the workspace and surroundings including “Potrero John,” the knobby rock in the workspace, a rock with similar nodular textures in the distance named “Modjeska Peak,” and a light tan rock with a dome-like structure in the vicinity of “Humber Park.”
ChemCam selected a slab of bedrock and loose (“float”) rock in the workspace to characterize their geochemistry with the LIBS instrument at “Millard Canyon” and “Cajon Pass,” respectively. Off in the distance, the science team selected the face of Gould mesa and upper Texoli butte for ChemCam long distance RMI imaging to get a closer look at the rocks, fractures, and layering.
The environmental theme group scheduled several activities to look at clouds, document the atmospheric opacity, and measure the optical depth of the atmosphere and constrain aerosol scattering properties. We have lots of exciting data in hand and more on the road ahead!
Share
Details
Last Updated Mar 12, 2025 Related Terms
Blogs Explore More
3 min read Sols 4475-4476: Even the Best-Laid Plans
Article
17 hours ago
2 min read Sealing the Deal
Article
6 days ago
5 min read Sols 4473-4474: So Many Rocks, So Many Textures!
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
Sols 4475-4476: Even the Best-Laid Plans
NASA’s Mars rover Curiosity acquired this image of “Gould Mesa,” named for a hill near NASA’s Jet Propulsion Laboratory in Southern California, using its Right Navigation Camera on March 6, 2025 — sol 4472, or Martian day 4,472 of the Mars Science Laboratory mission — at 01:37:17 UTC. NASA/JPL-Caltech Written by Deborah Padgett, OPGS Task Lead at NASA’s Jet Propulsion Laboratory
Earth planning date: Friday, March 7, 2025
In Curiosity’s last plan, the team decided to drive toward a very interesting nodular rock. The rover team hoped to do a detailed study of its surface texture over the weekend. However, Curiosity did not receive its expected Friday morning downlink of images taken after its drive. The MSL team did receive a tiny bit of data confirming that Curiosity’s drive finished as expected. Unfortunately, without images to determine exactly where Curiosity was located relative to its intended destination, the team was unable to do any instrument pointing at nearby objects, known as “targeted” observations. However, the rover team showed its resilience by filling the weekend plan with a full slate of fascinating remote observations of the terrain and sky around Curiosity’s current perch, high in the canyons of Mount Sharp. Our science and instrument teams always keep a list of backup observations close at hand — frequently those taking too much time to fit in a typical sol plan — in case they get an unexpected opportunity to use them!
On sol 4475, Curiosity will start its first science block midday with two back-to-back dust-devil surveys with Navcam. These searches for Martian whirlwinds will be followed by a measurement of atmospheric dust with Mastcam. Mastcam will then do its first large panorama image of the plan, an 11×3 mosaic starboard of the rover to document bedrock and regolith in an area with a dark band of material seen from orbit. This long observation will be followed by an AEGIS activity, using Navcam to find targets for ChemCam’s laser spectrograph. Curiosity will then repeat its post-drive imaging at high quality, hopefully to be received at JPL before Monday’s planning day. In the evening, APXS will do atmospheric composition studies for several hours.
The next day will be a “soliday,” without any observations. Early in the morning of sol 4476, Mastcam will take its second large panorama, which will be a fantastic 37×4 mosaic of sunrise on the slopes of Gould Mesa (see image). In the afternoon, there will be a Mastcam dust measurement, ChemCam calibration observation, ChemCam passive sky, and two more dust-devil surveys. The next morning, there will be a set of Navcam cloud movies, a dust measurement, and sky phase function observations to support the Mars aphelion cloud-belt campaign. On sol 4477, we will use the post-drive imaging taken over the weekend to plan contact science, then drive away from this location on sol 4478, continuing Curiosity’s journey toward the mysterious boxwork features to the west.
Share
Details
Last Updated Mar 11, 2025 Related Terms
Blogs Explore More
2 min read Sealing the Deal
Article
5 days ago
5 min read Sols 4473-4474: So Many Rocks, So Many Textures!
Article
5 days ago
2 min read Sols 4471-4472: Marching Through the Canyon
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Sols 4471-4472: Marching Through the Canyon
NASA’s Mars rover Curiosity acquired this image using its Mast Camera (Mastcam), a close-up of the rover’s Alpha Particle X-Ray Spectrometer (APXS), an instrument that measures the abundance of chemical elements in rocks and soils on the Martian surface. Located on the turret at the end of Curiosity’s robotic arm, APXS is about the size of a cupcake, and this image shows the handwritten markings on the instrument’s sensor head. Curiosity captured this image on March 23, 2024 — sol 4134, or Martian day 4,134 of the Mars Science Laboratory mission — at 21:59:21 UTC. NASA/JPL-Caltech/MSSS Written by Scott VanBommel, Planetary Scientist at Washington University
Earth planning date: Monday, March 3, 2025
Curiosity continued steady progress through the upper sulfate unit and toward its next major science waypoint: the boxwork structures. Our rover is currently driving south through a local canyon between “Texoli” and “Gould Mesa.” This route may expose the same rock layers observed while climbing along the eastern margin of the Gediz Vallis channel, prompting several science activities in today’s plan. With winter still gripping Gale crater and limiting the power available for science, the team carefully balanced a number of priorities.
The weekend’s drive positioned the rover within reach of light-toned laminated bedrock and gray float rock. We kicked off our two-sol plan by removing dust on a representative bedrock target, “Ramona Trail,” before analyzing with APXS and imaging with MAHLI. ChemCam acquired compositional analyses on a laminated gray float rock, “Josephine Peak,” in addition to long-distance images of Texoli. Mastcam documented key features, capturing images of Josephine Peak, Texoli, “Gobblers Knob,” and “Fort Tejon.” In addition to these science-driven images, Mastcam also acquired two images of APXS before a planned drive of about 21 meters (about 69 feet).
As Curiosity continues toward the boxwork structures, the intricate patterns we observe will provide valuable clues about the history of Mars. While the Mastcam images acquired today of the APXS sensor head won’t directly contribute to the boxwork study, they capture a more human aspect of the mission. With each “APXS horseshoe” image, such as the one featured in this blog from sol 4134, hand-written markings on the APXS sensor head appear alongside Martian terrain, a reminder that this incredible journey is driven by the human touch of a dedicated team on Earth who designed, built, and continue to operate this remarkable spacecraft.
Share
Details
Last Updated Mar 05, 2025 Related Terms
Blogs Explore More
2 min read Sols 4468-4470: A Wintry Mix of Mars Science
Article
2 days ago
2 min read Smooshing for Science: A Flat-Out Success
Article
5 days ago
4 min read Sols 4466-4468: Heading Into the Small Canyon
Article
7 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Sols 4468-4470: A Wintry Mix of Mars Science
NASA’s Mars rover Curiosity captured this image showing its wheel awkwardly perched atop one of the rocks in this location, as well as the textures of the layered sulfate unit bedrock blocks. The rover used its Left Navigation Camera (Navcam), one of a pair of stereo cameras on either side of the rover’s masthead, to record the image on Feb. 28, 2025, on sol 4466, or Martian day 4,466 of the Mars Science Laboratory mission, at 00:34:10 UTC. NASA/JPL-Caltech Written by Lucy Lim, Planetary Scientist at NASA’s Goddard Space Flight Center
Earth planning date: Friday, Feb. 28, 2025
Curiosity continues to climb roughly southward through the layered sulfate strata toward the “boxwork” features. Although the previous plan’s drive successfully advanced the rover roughly 21 meters southward (about 69 feet), the drive had ended with an awkwardly perched wheel. Because of this, unfortunately it was considered too risky to unstow the arm for contact science in this plan.
Nevertheless the team made the most of the imaging and LIBS observations available from the rover’s current location. A large Mastcam mosaic was planned on the nearby Texoli butte to capture its sedimentary structures from the rover’s new perspective. Toward the west, the boxwork strata exposed on “Gould Mesa” were observed using the ChemCam long-distance imaging capability, with Mastcam providing color context.
Several near-field Mastcam mosaics also captured some bedding and diagenetic structure in the nearby blocks as well as some modern aeolian troughs in the finer-grained material around them.
On the nearby blocks, two representative local blocks (“Gabrelino Trail” and “Sespe Creek”) are to be “zapped” with the ChemCam laser to give us LIBS (laser-induced breakdown spectroscopy) compositional measurements. The original Gabrelino Trail on Earth near the JPL campus is currently closed due to damage from the recent wildfires.
Meanwhile, the season on Mars (L_s ~ 50, or a solar longitude of about 50 degrees, heading into southern winter) has brought with it the opportunity to observe some recurring atmospheric phenomena: It’s aphelion cloud belt season, as well as Hadley cell transition season, during which a more southerly air mass crosses over Gale Crater.
This plan includes an APXS atmospheric observation (no arm movement required!) to measure argon and a ChemCam passive-sky observation to measure O2, which is a small (less than 1%) but measurable component in the Martian atmosphere. Dedicated cloud altitude observations, a phase function sky survey, and zenith and suprahorizon movies have also been included in the plan to characterize the clouds. As usual, the rover also continues to monitor the modern environment with measurements of atmospheric opacity via imaging, temperature, and humidity with REMS, and the local neutron environment with DAN.
Share
Details
Last Updated Mar 04, 2025 Related Terms
Blogs Explore More
2 min read Smooshing for Science: A Flat-Out Success
Article
3 days ago
4 min read Sols 4466-4468: Heading Into the Small Canyon
Article
5 days ago
2 min read Sols 4464-4465: Making Good Progress
Article
5 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.