Jump to content

Recommended Posts

  • Publishers
Posted
54355090547-e10dc68fb1-k.png?w=1920
Pictured from left: Roscosmos cosmonaut Kirill Peskov, NASA astronauts Nichole Ayers and Anne McClain, and JAXA (Japan Aerospace Exploration Agency) astronaut mission specialist Takuya Onishi train at SpaceX facilities in Hawthorne, California (Credit: SpaceX).

During NASA’s SpaceX Crew-10 mission to the International Space Station, which is scheduled to launch in March, select members of the four-person crew will participate in exercise and medical research aimed at keeping astronauts fit on future long-duration missions.

Crew members living and working aboard the space station have access to a designated training area outfitted with a weight-lifting system, a stationary bike, and a specialized treadmill called T2. The space station is expansive enough for bulky exercise equipment that helps preserve the health and performance of astronauts in space and when they return to Earth.

However, as NASA looks to explore beyond low Earth orbit, the agency anticipates future spacecraft will not have room for large exercise equipment, like treadmills. Since walking and running are essential parts of workouts aboard the space station, NASA does not fully understand how long-duration spaceflights without a treadmill will impact crews’ health and motor functions. Consequently, NASA researchers are adjusting astronauts’ training regimens, including eliminating the use of the treadmill in some cases, to study ways that maintain crews’ strength, fitness, bone health, and balance.

In an ongoing study called Zero T2, expedition crews are divided into three groups with different workout regimens. One group continues exercising normally, using all the available equipment aboard the orbiting complex. A second group forgoes using the treadmill, relying solely on the other available equipment. While a third group will only exercise using a new, experimental, less bulky workout machine. NASA compares the groups’ health data collected before, during, and after flight to determine if the lack of treadmill use negatively impacts the crews’ fitness, muscle performance, and recovery after return to Earth.

“A treadmill takes up a lot of mass, space, and energy. This is not great for missions to Mars where every kilogram counts,” explained NASA astronaut Matthew Dominick, who participated in the same study while serving as commander of NASA’s SpaceX Crew-8 mission in 2024. “The Zero T2 experiment is helping us figure out if we can go without a treadmill and still be healthy.”

Results of the Zero T2 study will help researchers determine how treadmill-free workouts may affect crew health, which will, in turn, help NASA build realistic exercise protocols for future deep space missions. Additionally, this investigation could support design improvements for exercise devices used to prevent or treat bone, muscle, and cardiovascular health on Earth.

Beyond the Zero T2 study, select NASA crew members will perform additional studies supported by the agency’s Human Research Program during their mission. Participating crew will conduct medical exams, provide biological samples, and document spaceflight-related injuries, among other tasks. 

“Astronauts choose which studies to participate in based on their interests,” explained Cherie Oubre, a NASA scientist at the agency’s Johnson Space Center in Houston, who helps oversee human research studies carried out aboard the space station. “The experiments address important risks and gaps associated with human spaceflight.”

One set of experiments, called CIPHER (Complement of Integrated Protocols for Human Exploration Research), will help researchers understand how multiple systems within the human body adjust to varying mission durations. CIPHER study members will complete vision assessments, cognitive tests, and MRI scans to help provide a clearer picture of how the entire body is affected by space.

“The CIPHER experiment tracks changes in the eyes, bones, heart, muscles, immune system, and more,” Oubre said. “The investigation provides the most comprehensive overview of how long-duration spaceflight affects the entire human body ever conducted, helping us advance human expeditions to the Moon, Mars, and elsewhere.”

Some crew members also will contribute to a core set of measurements called Spaceflight Standard Measures. The measurements represent how the human body and mind adapt to space travel over time and serve as a basis for other spaceflight studies like CIPHER. Additionally, crew members may provide biological samples for Omics Archive, a separate study analyzing how the body reacts to long-duration spaceflight at the molecular level.

In another study, select crew members will test a potential treatment for spaceflight-associated neuro-ocular syndrome, a condition associated with brain changes and swelling of the back of the eye. Researchers are unsure what causes the syndrome or why only certain astronauts develop it, but the shift of bodily fluids toward the head in weightlessness may play a role. Some scientists believe genetics related to how the body processes B vitamins may affect how astronauts respond to those fluid shifts. Participating crew will test whether a daily B vitamin supplement can ease or prevent the development of symptoms. They also will investigate if cuffs worn on astronauts’ thighs to keep fluids in the legs could be an effective intervention.

Upon return, the select crew members will complete surveys that record any discomfort or injuries associated with landing, such as scrapes and bruises. Results of the surveys­­ ̶ when combined with data retrieved by sensors in the vehicle­­ ̶ will help researchers catalog these injuries and improve the design of spacecraft.

Crew members began participating in the studies about a year before their mission, learning about the work and offering baseline health data. They will continue to provide data for the experiments for up to two years after returning home.

____

NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, commercial missions, and the International Space Station, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research drives NASA’s quest to innovate ways that keep astronauts healthy and mission-ready as human space exploration expands to the Moon, Mars, and beyond.

Learn More About Exercising in Space

Astronauts aboard the International Space Station typically exercise for two hours each day. From running to cycling to weightlifting, learn how crew members complete fitness regimens in space and commit to staying healthy – even in microgravity (Credit: NASA).

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronaut Anil Menon poses for a portrait at NASA’s Johnson Space Center in Houston. Credit: NASA/Josh Valcarcel NASA astronaut Anil Menon will embark on his first mission to the International Space Station, serving as a flight engineer and Expedition 75 crew member.
      Menon will launch aboard the Roscosmos Soyuz MS-29 spacecraft in June 2026, accompanied by Roscosmos cosmonauts Pyotr Dubrov and Anna Kikina. After launching from the Baikonur Cosmodrome in Kazakhstan, the trio will spend approximately eight months aboard the orbiting laboratory.
      During his expedition, Menon will conduct scientific investigations and technology demonstrations to help prepare humans for future space missions and benefit humanity.
      Selected as a NASA astronaut in 2021, Menon graduated with the 23rd astronaut class in 2024. After completing initial astronaut candidate training, he began preparing for his first space station flight assignment.
      Menon was born and raised in Minneapolis and is an emergency medicine physician, mechanical engineer, and colonel in the United States Space Force. He holds a bachelor’s degree in neurobiology from Harvard University in Cambridge, Massachusetts, a master’s degree in mechanical engineering, and a medical degree from Stanford University in California. Menon completed his emergency medicine and aerospace medicine residency at Stanford and the University of Texas Medical Branch in Galveston.
      In his spare time, he still practices emergency medicine at Memorial Hermann’s Texas Medical Center and teaches residents at the University of Texas’ residency program. Menon served as SpaceX’s first flight surgeon, helping to launch the first crewed Dragon spacecraft on NASA’s SpaceX Demo-2 mission and building SpaceX’s medical organization to support humans on future missions. He served as a crew flight surgeon for both SpaceX flights and NASA expeditions aboard the space station.
      For nearly 25 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and conducting critical research for the benefit of humanity and our home planet. Space station research supports the future of human spaceflight as NASA looks toward deep space missions to the Moon under the Artemis campaign and in preparation for future human missions to Mars, as well as expanding commercial opportunities in low Earth orbit and beyond. 
      Learn more about International Space Station at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

      Shaneequa Vereen
      Johnson Space Center, Houston
      281-483-5111
      shaneequa.y.vereen@nasa.gov   
      Share
      Details
      Last Updated Jul 01, 2025 LocationNASA Headquarters Related Terms
      Astronauts Humans in Space International Space Station (ISS) ISS Research View the full article
    • By Space Force
      Developed to drive continuous improvement, the Civilian Human Capital Evaluation and Accountability Program leverages data to assess and enhance the effectiveness, efficiency and compliance of human capital programs across the force.
      View the full article
    • By NASA
      The four crew members of NASA’s SpaceX Crew-11 mission to the International Space Station train inside a SpaceX Dragon spacecraft in Hawthorne, California. From left to right: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA astronaut Kimiya Yui.Credit: SpaceX Media accreditation is open for the launch of NASA’s 11th rotational mission of a SpaceX Falcon 9 rocket and Dragon spacecraft carrying astronauts to the International Space Station for a science expedition. NASA’s SpaceX Crew-11 mission is targeted to launch in the late July/early August timeframe from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.
      The mission includes NASA astronauts Zena Cardman, serving as commander; Mike Fincke, pilot; JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, mission specialist; and Roscosmos cosmonaut Oleg Platonov, mission specialist. This is the first spaceflight for Cardman and Platonov, the fourth trip for Fincke, and the second for Yui, to the orbiting laboratory.
      Media accreditation deadlines for the Crew-11 launch as part of NASA’s Commercial Crew Program are as follows:
      International media without U.S. citizenship must apply by 11:59 p.m. EDT on Sunday, July 6. U.S. media and U.S. citizens representing international media organizations must apply by 11:59 p.m. on Monday, July 14. All accreditation requests must be submitted online at:
      https://media.ksc.nasa.gov
      NASA’s media accreditation policy is online. For questions about accreditation or special logistical requests, email: ksc-media-accreditat@mail.nasa.gov. Requests for space for satellite trucks, tents, or electrical connections are due by Monday, July 14.
      For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.
      For launch coverage and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Steve Siceloff / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jul 01, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew Commercial Space Humans in Space International Space Station (ISS) ISS Research Space Operations Mission Directorate View the full article
    • By Amazing Space
      LIVE - Earth From Space Views - Seen From The ISS
    • By Space Force
      The Department of the Air Force achieved 100% of its annual recruitment goal three months ahead of schedule, a testament to the enduring appeal of service and the effectiveness of modernized recruiting strategies.

      View the full article
  • Check out these Videos

×
×
  • Create New...