Jump to content

Recommended Posts

  • Publishers
Posted
A woman looks through a metal tube that she is holding up. Her elbows rest on the table in front of her. The photo is in black and white. There is text at the bottom that reads "LMAL 33037."
NASA

An apprentice at Langley Laboratory (now NASA’s Langley Research Center in Hampton, Virginia) inspects wind tunnel components in this image from May 15, 1943. During World War II, the National Advisory Committee for Aeronautics (NACA), the precursor to NASA, employed apprentices (which NASA has since transitioned into internships) to support meaningful jobs in data computing, testing, and mechanical work.

Make your own mark on NASA history. Apply to the agency’s summer internships by 11:59 p.m. EST Feb. 28.

Image credit: NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Glenn Research Center High School Engineering Institute participants, left to right: Evan Ricchetti, Edan Liahovetsky, and Doris Chen, prepare to add weights to their rover to test the effectiveness of their wheel grouser designs on Friday, July 18, 2025. Credit: NASA/Jef Janis  This summer, NASA’s Glenn Research Center in Cleveland hosted the NASA Glenn High School Engineering Institute, a free, work-based learning experience designed to prepare rising high school juniors and seniors for careers in the aerospace workforce. 
      “The institute immerses students in NASA’s work, providing essential career readiness tools for future science, technology, engineering, and mathematics-focused academic and professional pursuits,” said Jerry Voltz of NASA Glenn’s Office of STEM Engagement. 
      Throughout the five-day sessions (offered three separate weeks in July), students used authentic NASA mission content and collaborated with Glenn’s technical experts. They gained a deeper understanding of the engineering design process, developed practical engineering solutions to real-world challenges, and tested prototypes to address key mission areas such as: 
      Acoustic dampening: How can we reduce noise pollution from jet engines?  Power management and distribution: How can we develop a smart power system for future space stations?  Simulated lunar operations: Can we invent tires that don’t use air?  NASA Glenn Research Center High School Engineering Institute participants, left to right: Adriana Pudloski, Anadavel Sakthi, Aditya Rohatgi, and Alexa Apshago, make modifications to the control system program for their rover on Friday, July 18, 2025. Credit: NASA/Jef Janis  Voltz said he hoped students left the program with three key takeaways: a deeper curiosity and excitement for STEM careers, firsthand insight into how cutting-edge technology developed in Cleveland contributes to NASA’s most prominent missions, and most importantly, a feeling of empowerment gained from engaging with some of NASA’s brightest minds in the field. 
      Return to Newsletter View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      From left to right, Astronaut Tracy Dyson, Jeremy Shidner, Sara R. Wilson, and Christopher Broadaway pose for a photo after the 2025 Silver Snoopy Awards ceremony. NASA/Mark Knopp Three employees from NASA’s Langley Research Center in Hampton, Virginia recently earned the Silver Snoopy award, a prestigious honor given to NASA employees and contractors across the agency for exceptional achievements related to spaceflight safety or mission success. Christopher Broadaway, Jeremy Shidner, and Sara Wilson received the awards during a ceremony held at the center on July 22. 
      The Silver Snoopy award is given personally by NASA astronauts and is presented to less than one percent of the agency’s workforce annually. The award is one of several overseen by the Space Flight Awareness (SFA) Program at NASA. Established in 1963, the SFA Program is vital in ensuring quality and flight safety of America’s space program. The SFA Program works to highlight the individuals behind the success of NASA’s programs as well as motivate the next generation of innovators and cosmic explorers. 
      Astronaut Tracy Dyson visited Langley to present the Silver Snoopy lapel pin and a framed Silver Snoopy certificate. Dyson flew aboard the space shuttle Endeavor on STS-118, served as flight engineer for Expedition 23/24, and conducted hundreds of hours of scientific investigations aboard the International Space Station for Expedition 70/71. She has spent a total of 373 days in space and dedicated over 23 hours to spacewalks. 
      As a flight engineer with substantial experience, Dyson understands the importance of space flight safety.  
      “Those who are receiving this award didn’t do it because they came nine to five and left. It’s not because it was just their job,” she said. “It’s because it’s their life, and our lives are safer and better for it.” 
      Astronaut Tracy Dyson signs certificates of appreciation prior to the 2025 Silver Snoopy Awards ceremony. NASA/Mark Knopp Silver Snoopy recipient and aerospace engineer Jeremey Shidner echoed Dyson’s perspective. 
      “This level of trust is particularly profound because astronauts understand better than anyone the countless systems, procedures, and people that must work flawlessly for a mission to succeed,” he said. “When astronauts single someone out for recognition, it reflects their confidence that this person embodies the same commitment to excellence and safety that they themselves must maintain.” 
      The prestigious award consists of a certificate of appreciation signed by Dyson, an authentication letter, and a miniature sterling silver lapel pin in the shape of the well-loved character Snoopy from the comic strip “Peanuts.” Each pin awarded has flown in space. The pins awarded to Langley’s recipients flew aboard STS-118. 
      The 2025 Silver Snoopy Award pins NASA/Mark Knopp Here are the three award recipients from Langley and their achievements: 
      Christopher Broadaway: For exemplary support in assisting the Commercial Crew Program ensure safety and mission success in industry partners’ human spaceflight missions. 
      Jeremy Shidner: For significant contributions to the Commercial Crew Program to ensure flight safety and mission success for Entry, Descent, and Landing. Collaborating closely with the Crew Flight Test team and Mission Operations Flight Dynamics Officers, he refined the simulation model to incorporate real pilot performance data, which resulted in increased entry accuracy, eliminating an elevated risk to crew safety. 
      Sara R. Wilson: For engineering excellence in the application of advanced statistical tools and methods characterizing NASA’s human spaceflight missions. She also played a key role in developing standardized tests for advanced lunar spacesuit gloves, creating consistency in evaluating materials for extreme lunar environments. 
      Sarah Reeps and Layla Smith
      NASA Langley Research Center
      Share
      Details
      Last Updated Aug 07, 2025 Related Terms
      Langley Research Center General NASA Centers & Facilities Explore More
      4 min read As NASA Missions Study Interstellar Comet, Hubble Makes Size Estimate
      A team of astronomers has taken the sharpest-ever picture of the unexpected interstellar comet 3I/ATLAS…
      Article 48 minutes ago 7 min read Wade Sisler: Aficionado of Wonder Serving the Cosmos
      Article 3 hours ago 4 min read NASA Supercomputers Take on Life Near Greenland’s Most Active Glacier
      Article 20 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Dwayne Lavigne works as a controls engineer at NASA’s Stennis Space Center, where he supports NASA’s Artemis mission by programming specialized computers for engine testing.NASA/Danny Nowlin As a controls engineer at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, Dwayne Lavigne does not just fix problems – he helps put pieces together at America’s largest rocket propulsion test site.
      “There are a lot of interesting problems to solve, and they are never the same,” Lavigne said. “Sometimes, it is like solving a very cool puzzle and can be pretty satisfying.”
      Lavigne programs specialized computers called programmable logic controllers. They are extremely fast and reliable for automating precisely timed operations during rocket engine tests as NASA Stennis supports the agency’s Artemis missions to explore the Moon and build the foundation for the first crewed mission to Mars.
      However, the system will not act unless certain parameters are met in the proper sequence. It can be a complex relationship. Sometimes, 20 or 30 things must be in the correct configuration to perform an operation, such as making a valve open or close, or turning a motor on or off.
      The Picayune, Mississippi, native is responsible for establishing new signal paths between test hardware and the specialized computers.
      He also develops the human machine interface for the controls. The interface is a screen graphic that test engineers use to interact with hardware.
      Lavigne has worked with NASA for more than a decade. One of his proudest work moments came when he contributed to development of an automated test sequencing routine used during all RS-25 engine tests on the Fred Haise Test Stand.
      “We’ve had many successful tests over the years, and each one is a point of pride,” he said.
      When Lavigne works on the test stand, he works with the test hardware and interacts with technicians and engineers who perform different tasks than he does. It provides an appreciation for the group effort it takes to support NASA’s mission.
      “The group of people I work with are driven to get the job done and get it done right,” he said.
      In total, Lavigne has been part of the NASA Stennis federal city for 26 years. He initially worked as a contractor with the Naval Oceanographic Office as a data entry operator and with the Naval Research Laboratory as a software developer.
      September marks 55 years since NASA Stennis became a federal city. NASA, and more than 50 companies, organizations, and agencies located onsite share in operating costs, which allows tenants to direct more of their funding to individual missions. 
      “Stennis has a talented workforce accomplishing many different tasks,” said Lavigne. “The three agencies I’ve worked with at NASA Stennis are all very focused on doing the job correctly and professionally. In all three agencies, people realize that lives could be at risk if mistakes are made or shortcuts are taken.”
      Learn More About Careers at NASA Stennis Explore More
      6 min read A Defining Era: NASA Stennis and Space Shuttle Main Engine Testing
      Article 1 month ago 4 min read NASA Stennis Releases First Open-Source Software
      Article 2 months ago 5 min read NASA Stennis Software is Built for Future Growth
      Article 2 months ago View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4556-4558: It’s All in a Day’s (box)Work
      NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on June 2, 2025 — Sol 4558, or Martian day 4,558 of the Mars Science Laboratory mission — at 12:23:56 UTC. NASA/JPL-Caltech Written by Sharon Wilson Purdy, Planetary Geologist at the Smithsonian National Air and Space Museum
      Earth planning date: Friday, May 30, 2025
      When you are scheduled to participate in Science Operations for the rover’s weekend plan, you know it’s going to be a busy morning! Assembling the activities for Friday through Sunday (Sols 4556 through 4558) was no exception. I participated on this shift as the “keeper of the plan” for the geology and mineralogy theme group where I worked with members of the science and instrument teams to compile a set of observations for the rover to complete over the weekend. The rover continues to drive over a surface of shallow, sometimes sand-filled depressions that are separated by raised ridges — informally known as the “boxwork structures.” On this Friday, we were tasked with assessing the ground in our immediate vicinity to determine if the low-lying bedrock in the hollows was suitable for drilling.
      With a focus on packing the plan with remote sensing activities to understand the bedrock around us, we used the ChemCam laser to analyze the chemistry of two bedrock targets, “La Tuna Canyon” and “Cooper Canyon,” that were also documented by Mastcam. ChemCam and Mastcam also teamed up to image an interesting dark ridge nearby named “Encinal Canyon.” Mastcam created stereo mosaics to document the nature of the candidate drill sites that were near the rover, in addition to the “Blue Sky Preserve” stereo mosaic that beautifully captured the nature of the boxwork structures in front of us. The environmental theme group included some of their favorite activities in the plan to monitor the clouds, wind, and the atmosphere.
      Curiosity has successfully completed numerous long drives (about 20+ meters, or 66 feet and beyond) in the past several weeks but this weekend the rover got a bit of a reprieve — the rover will drive approximately 7 meters (about 23 feet) to get situated in front of a possible drill site. I’m eagerly looking forward to seeing what unfolds on Monday!  
      .
      Share








      Details
      Last Updated Jun 03, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4554–4555: Let’s Try That One Again…


      Article


      4 days ago
      2 min read Sol 4553: Back to the Boxwork!


      Article


      5 days ago
      3 min read A Dust Devil Photobombs Perseverance!


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Researchers look at a bend that occurred in the 94-foot triangular, rollable and collapsible boom during an off-axis compression test.NASA/David C. Bowman Researchers at NASA’s Langley Research Center in Hampton, Virginia, have developed a technique to test long, flexible, composite booms for use in space in such a way that gravity helps, rather than hinders, the process. During a recent test campaign inside a 100-foot tower at a NASA Langley lab, researchers suspended a 94-foot triangular, rollable, and collapsible boom manufactured by Florida-based aerospace company, Redwire, and applied different forces to the boom to see how it would respond. 

      Having a facility tall enough to accommodate vertical testing is advantageous because horizontal tests require extra equipment to keep gravity from bending the long booms, but this extra equipment in turn affects how the boom responds. These mechanical tests are important because NASA and commercial space partners could use long composite booms for several functions including deployable solar sails and deployable structures, such as towers for solar panels, that could support humans living and working on the Moon.  

      Redwire will be able to compare the results of the physical testing at NASA Langley to their own numerical models and get a better understanding of their hardware. NASA’s Game Changing Development program in the agency’s Space Technology Mission Directorate funded the tests. 

      Researchers conducted the tests inside a 100-foot tower at NASA Langley.NASA/Mark Knopp Share
      Details
      Last Updated May 29, 2025 Related Terms
      Langley Research Center Game Changing Development Program Space Technology Mission Directorate Explore More
      3 min read Autonomous Tritium Micropowered Sensors
      Article 2 days ago 3 min read Addressing Key Challenges To Mapping Sub-cm Orbital Debris in LEO via Plasma Soliton Detection
      Article 2 days ago 3 min read Breathing Beyond Earth: A Reliable Oxygen Production Architecture for Human Space Exploration
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...