Jump to content

Recommended Posts

  • Publishers
Posted

2 min read

Gardens on Mars? No, Just Rocks!

A color photo from the Martian surface shows rough terrain, with numerous tan colored rocks in many shapes and sizes scattered and embedded in soil that’s a warm shade of brown. One rock is much larger, and flat, taking up most of the center-left of the image. On its surface is a shallow, circular impression — its ratio of width to depth like that of a coin — and the impression is surrounded on its right side by mounded dust, clearly dug out from the hole. Both the dust and the impression are a yellowish tan, very distinct from the surface of the flat rock. To the left of that, almost at the center-;eft edge of the image, is another hole, clearly deeper and surrounded on all sides by a higher mound of dust, the same yellow-tan color.
NASA’s Mars Perseverance rover acquired this image of the area in front of it, showing the Serpentine Lake abrasion patch on the right-hand-side of the rock, with the Green Gardens sampling location on the left. The rover used its onboard Front Right Hazard Avoidance Camera A, and captured the image on Feb. 16, 2025 (sol 1420, or Martian day 1,420 of the Mars 2020 mission) at the local mean solar time of 16:45:19.
NASA/JPL-Caltech

Over the past week, Perseverance has been parked at a location called “Tablelands,” an area containing the “Serpentine Lake” abrasion patch acquired a few weeks ago. The Mars 2020 team has been diligently analyzing the data from the abrasion patch, and these findings led to the decision to return to Tablelands and attempt a sample at this location. Due to the disaggregated material thwarting our last sample attempt at “Cat Arm Reservoir,” the team was eagerly awaiting results from this sampling attempt at a target called “Green Gardens.”

Then, very early Monday morning, the CacheCam images came down confirming that Perseverance had collected another core on Mars! The team will be working next on sealing this sample tube.

A color photograph shows a bright yellowish-tan circle in the middle of the frame, surrounded by a very dark brown-gray background. Inside the circle, steaks of gold line the farthest edge, like veins in an ore deposit. The center part of the circle is uneven, looking like an orbital view of a tiny, rocky planet. In the two o’clock position on the circle, a shadow or depression resembles a perched bird, facing to the left.
NASA’s Mars Perseverance rover acquired this image using its onboard Sample Caching System Camera (CacheCam), located inside the rover underbelly. It looks down into the top of a sample tube to take close-up pictures of the sampled material and the tube as it’s prepared for sealing and storage. The material seen inside the coring bit is the Green Gardens sample. This image was acquired on Feb. 17, 2025 (sol 1420, or Martian day 1,420 of the Mars 2020 mission) at the local mean solar time of 19:16:24.
NASA/JPL-Caltech

Tablelands, the rock from which the Green Gardens core comes, is exciting to the Science Team because it contains serpentine minerals. These serpentine minerals likely formed several billion years ago when water interacted with rocks before Jezero crater formed. Water altered the minerals originally present in the rock into serpentine, which is often green in color. This characteristic green color is why the team chose the name “Green Gardens” for this sample target. These minerals are especially exciting because their structure and composition can tell us about the history of water on Mars. The formation of serpentine on Earth can support microbial communities, and the same might have been true on Mars. A sample like this from the Jezero crater rim is an important piece of the puzzle to Jezero’s watery past!

Perseverance is planning to conclude its time at Serpentine Lake with more science observations of the Tablelands outcrop. These measurements could include a reexamination of the Serpentine Lake abrasion patch and analysis of the tailings pile produced by the Green Gardens drill. After snaking around this area for a couple weeks, our next drives will take us further down the slope of the crater rim. We’ll head toward our next stop at a site called “Broom Point,” where more exciting discoveries await!

Written by Eleanor Moreland, Ph.D. Student Collaborator at Rice University

Share

Details

Last Updated
Feb 24, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 01:08:00 Watch the replay of our Hera mission Mars flyby event. On 12 March 2025, ESA’s Hera mission came to within 5000 km of the surface of the red planet and 300 km of Mars’s more distant and enigmatic moon Deimos. During this flyby, Hera performed observations of both Mars and the city-sized Deimos. Hera then needed to swing its High Gain Antenna back to Earth to transmit its data home. On Thursday, 13 March, these images were premiered by Hera’s science team from ESA’s ESOC mission control centre in Darmstadt, Germany, explaining what they reveal, during our public webcast starting at 11:50 CET. The team was joined by ESA astronaut Alexander Gerst and renowned science fiction writer Andy Weir, author of The Martian and Project Hail Mary, as well as a surprise special guest!
      View the full article
    • By European Space Agency
      While performing yesterday’s flyby of Mars, ESA’s Hera mission for planetary defence made the first use of its payload for scientific purposes beyond Earth and the Moon. Activating a trio of instruments, Hera imaged the surface of the red planet as well as the face of Deimos, the smaller and more mysterious of Mars’s two moons.
      View the full article
    • By European Space Agency
      Video: 00:02:43 On 12 March 2025 ESA’s Hera spacecraft for planetary defence performs a flyby of Mars. The gravity of the red planet shifts the spacecraft’s trajectory towards the Didymos binary asteroid system, shortening its trip by months and saving substantial fuel.
      This is a simulation of that flyby, sped up 500 times, with closest approach to Martian moon Deimos taking place at 12:07 GMT and Mars occurring at 12:51 GMT. It was made using SPICE (Spacecraft, Planet, Instrument, C-matrix, Events) software. Produced by a team at ESA’s ESAC European Space Astronomy Centre, this SPICE visualisation is used to plan instrument acquisitions during Hera’s flyby.
      Hera comes to around 5000 km from the surface of Mars during its flyby. It will also image Deimos, the smaller of Mars’s two moons, from a minimum 1000 km away (while venturing as close as 300 km). Hera will also image Mars’s larger moon Phobos as it begins to move away from Mars. In this sped-up simulation, Deimos is seen 30 seconds in, at 12:07 GMT, while the more distant star-like Phobos becomes visible at two minutes in, at 12:49 GMT.
      The spacecraft employs three of its instruments over the course of these close encounters, all located together on the ‘Asteroid Deck’ on top of Hera:
      Hera’s Asteroid Framing Camera is formed of two redundant 1020x1020 pixel monochromatic visible light cameras, used for both navigation and science.
      The Thermal Infrared Imager, supplied by the Japanese Aerospace Exploration Agency, JAXA, images at mid-infrared wavelengths to determine surface temperatures.
      Hera’s Hyperscout H is a hyperspectral imager, observing in 25 visible and near-infrared spectral bands to prospect surface minerals.
      Did you know this mission has its own AI? You can pose questions to our Hera Space Companion!
      View the full article
    • By European Space Agency
      Video: 00:01:36 On  Wednesday 12 March 2025 ESA’s Hera spacecraft for planetary defence performs a flyby of Mars. The gravity of the red planet shifts the spacecraft’s trajectory towards its final destination of the Didymos binary asteroid system, shortening its trip by months and saving substantial fuel.
      Watch the livestream release of images from Hera’s flyby by the mission’s science team on Thursday 13 March, starting at 11:50 CET!
      Hera comes to around 5000 km from the surface of Mars during its flyby. It will also image Deimos, the smaller of Mars’s two moons, from a minimum 1000 km away (while venturing as close as 300 km). Hera will also image Mars’s larger moon Phobos as it begins to move away from Mars.
      Launched on 7 October 2024, Hera on its way to visit the first asteroid to have had its orbit altered by human action. By gathering close-up data about the Dimorphos asteroid, which was impacted by NASA’s DART spacecraft in 2022, Hera will help turn asteroid deflection into a well understood and potentially repeatable technique.
      Hera will reach the Didymos asteroid and its Dimorphos moonlet in December 2026. By gathering crucial missing data during its close-up crash scene investigation, Hera will turn the kinetic impact method of asteroid deflection into a well understood technique that could potentially be used for real when needed.
      View the full article
    • By European Space Agency
      Join us live for a star-studded event this Thursday, as scientists working on ESA’s Hera mission for planetary defence release the mission’s first scientific observations beyond the Earth-Moon system, following its imminent flyby of Mars.
      View the full article
  • Check out these Videos

×
×
  • Create New...