Jump to content

NASA Marshall Reflects on 65 Years of Ingenuity, Teamwork 


Recommended Posts

  • Publishers
Posted
6 Min Read

NASA Marshall Reflects on 65 Years of Ingenuity, Teamwork 

A drone shot flies around the Propulsion Lab at Marshall Space Flight Center in Huntsville, Alabama.

NASA’s Marshall Space Flight Center in Huntsville, Alabama, is celebrating its 65-year legacy of ingenuity and service to the U.S. space program – and the expansion of its science, engineering, propulsion, and human spaceflight portfolio with each new decade since the NASA field center opened its doors on July 1, 1960.

What many Americans likely call to mind are the “days of smoke and fire,” said Marshall Director Joseph Pelfrey, referring to the work conducted at Marshall to enable NASA’s launch of the first Mercury-Redstone rocket and the Saturn V which lifted Americans to the Moon, the inaugural space shuttle mission, and the shuttle flights that carried the Hubble Space TelescopeChandra X-ray Observatory, and elements of the International Space Station to orbit. Most recently, he said they’re likely to recall the thunder of NASA’s SLS (Space Launch System), rising into the sky during Artemis I.

NASA’s Space Launch System rocket carrying the Orion spacecraft launches on the Artemis I flight test, Wednesday, Nov. 16, 2022, from Launch Complex 39B at NASA’s Kennedy Space Center in Florida.
NASA’s Space Launch System, carrying the Orion spacecraft, launches on the Artemis I flight test on Nov. 16, 2022. NASA’s Marshall Space Flight Center in Huntsville, Alabama, led development and oversees all work on the new flagship rocket, building on its storied history of propulsion and launch vehicle design dating back to the Redstone and Saturn rockets. The most powerful rocket ever built, SLS is the backbone of NASA’s Artemis program, set to carry explorers back to the Moon in 2026, help establish a permanent outpost there, and make possible new, crewed journeys to Mars in the years to come.
NASA/Bill Ingalls

Yet all the other days are equally meaningful, Pelfrey said, highlighting a steady stream of milestones reflecting the work of Marshall civil service employees, contractors, and industry partners through the years – as celebrated in a new “65 Years of Marshall” timeline.

“The total sum of hours, contributed by tens of thousands of men and women across Marshall’s history, is incalculable,” Pelfrey said. “Together they’ve blended legacy with innovation – advancing space exploration and scientific discovery through collaboration, engineering excellence, and technical solutions. They’ve invented and refined technologies that make it possible to safely live and work in space, to explore other worlds, and to help safeguard our own.

The total sum of hours, contributed by tens of thousands of men and women across Marshall’s history, is incalculable.

Joseph Pelfrey

Joseph Pelfrey

Marshall Space Flight Center Director

“Days of smoke and fire may be the most visible signs, but it’s the months and years of preparation and the weeks of post-launch scientific discovery that mark the true dedication, sacrifice, and monumental achievements of this team.”

Reflecting on Marshall history

Marshall’s primary task in the 1960s was the development and testing of the rockets that carried the first American astronaut to space, and the much larger and more technically complex Saturn rocket series, culminating in the mighty Saturn V, which carried the first human explorers to the Moon’s surface in 1969.

“Test, retest, and then fly – that’s what we did here at the start,” said retired engineer Harry Craft, who was part of the original U.S. Army rocket development team that moved from Fort Bliss, Texas, to Huntsville to begin NASA’s work at Marshall. “And we did it all without benefit of computers, working out the math with slide rules and pads of paper.”

This vintage photograph shows the 138-foot long first stage of the Saturn V being lowered to the ground following a successful static test firing at Marshall Space flight Center's S-1C test stand. The firing provided NASA engineers information on the booster's systems. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
The 138-foot-long first stage of the Saturn V rocket is lowered to the ground following a successful static test firing in fall 1966 at the S-1C test stand at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The Saturn V, developed and managed at Marshall, was a multi-stage, multi-engine launch vehicle that stood taller than the Statue of Liberty and lofted the first Americans to the Moon. Its success helped position Marshall as an aerospace leader in propulsion, space systems, and launch vehicle development.
NASA

“Those were exciting times,” retired test engineer Parker Counts agreed. He joined Marshall in 1963 to conduct testing of the fully assembled and integrated Saturn first stages. It wasn’t uncommon for work weeks to last 10 hours a day, plus weekend shifts when deadlines were looming. 

Counts said Dr. Wernher von Braun, Marshall’s first director, insisted staff in the design and testing organizations be matched with an equal number of engineers in Marshall’s Quality and Reliability Assurance Laboratory. 

“That checks-and-balances engineering approach led to mission success for all 32 of the Saturn family of rockets,” said Counts, who went on to support numerous other propulsion programs before retiring from NASA in 2003.

“We worked with the best minds and best equipment available, pushing the technology every day to deliver the greatest engineering achievement of the 20th century,” said instrumentation and electronics test engineer Willie Weaver, who worked at Marshall from 1960 to 1988 – and remains a tour guide at its visitor center, the U.S. Space & Rocket Center

We worked with the best minds and best equipment available, pushing the technology every day to deliver the greatest engineering achievement of the 20th century.

Willie Weaver

Willie Weaver

Former Marshall Space Flight Center Employee

The 1970s at Marshall were a period of transition and expanded scientific study, as NASA ended the Apollo Program and launched the next phase of space exploration. Marshall provided critical work on the first U.S. space station, Skylab, and led propulsion element development and testing for NASA’s Space Shuttle Program.

Marshall retiree Jim Odom, a founding engineer who got his start launching NASA satellites in the run-up to Apollo, managed the Space Shuttle External Tank project. The role called for weekly trips to NASA’s Michoud Assembly Facility in New Orleans, which has been managed by Marshall since NASA acquired the government facility in 1961. The shuttle external tanks were manufactured in the same bays there where NASA and its contractors built the Saturn rockets. 

7777894~large.jpg?w=1920&h=1507&fit=clip
This photograph shows the liquid hydrogen tank and liquid oxygen tank for the Space Shuttle external tank (ET) being assembled in the weld assembly area of the Michoud Assembly Facility (MAF). The ET provides liquid hydrogen and liquid oxygen to the Shuttle’s three main engines during the first eight 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.
NASA

“We didn’t have cellphones or telecon capabilities yet,” Odom recalled. “I probably spent more time with the pilot of the twin-engine plane in those days than I did with my wife.”

Marshall’s shuttle propulsion leadership led to the successful STS-1 mission in 1981, launching an era of orbital science exemplified by NASA’s Spacelab program

“Spacelab demonstrated that NASA could continue to achieve things no one had ever done before,” said Craft, who served as mission manager for Spacelab 1 in 1983 – a highlight of his 40-year NASA career. “That combination of science, engineering, and global partnership helped shape our goals in space ever since.” 

This photo shows the High Resolution Camera (HRC) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being integrated with the High Resolution Mirror Assembly (HRMA) in Marshall Space Flight Center's (MSFC's) 24-foot Vacuum Chamber at the X-Ray Calibration Facility (XRCF). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most poweful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRC is one of the two instruments used at the focus of CXO, where it will detect x-rays reflected from an assembly of eight mirrors. The unique capabilities of the HRC stem from the close match of its imaging capability to the focusing of the mirrors. When used with CXO mirrors, the HRC makes images that reveal detail as small as one-half an arc second. This is equivalent to the ability to read a newspaper at a distance of 1 kilometer. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components relatedto x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).
Engineers in the X-ray Calibration Facility at NASA’s Marshall Space Flight Center in Huntsville, Alabama, work to integrate elements of the Chandra X-ray Observatory in this March 1997 photo. Chandra was lifted to orbit by space shuttle Columbia on July 23, 1999, the culmination of two decades of telescope optics, mirror, and spacecraft development and testing at Marshall. In the quarter century since, Chandra has delivered nearly 25,000 detailed observations of neutron stars, supernova remnants, black holes, and other high-energy objects, some as far as 13 billion light-years distant. Marshall continues to manage the program for NASA. 
NASA

Bookended by the successful Hubble and Chandra launches, the 1990s also saw Marshall deliver the first U.S. module for the International Space Station, signaling a transformative new era of human spaceflight.

Odom, who retired in 1989 as associate administrator for the space station at NASA Headquarters, reflects on his three-decade agency career with pride. 

“It was a great experience, start to finish, working with the teams in Huntsville and New Orleans and our partners nationwide and around the globe, meeting each new challenge, solving the practical, day-to-day engineering and technology problems we only studied about in college,” he said. 

The 45-foot, port-side (P1) truss segment flight article for the International Space Station is being transported to the Redstone Airfield, Marshall Space Flight Center. The truss will be loaded aboard NASA's Super Guppy cargo plane for shipment to the Kennedy Space Center.
Shrouded for transport, a 45-foot segment of the International Space Station’s “backbone” truss rolls out of test facilities at NASA’s Marshall Space Flight Center in Huntsville, Alabama, in July 2000, ready to be flown to the Kennedy Space Center in Florida for launch. Marshall played a key role in the development, testing, and delivery of the truss and other critical space station modules and structural elements, as well as the station’s air and water recycling systems and science payload hardware. Marshall’s Payload Operations Integration Center also continues to lead round-the-clock space station science. 
NASA

That focus on human spaceflight solutions continued into the 21st century. Marshall delivered additional space station elements and science hardware, refined its air and water recycling systems, and led round-the-clock science from the Payload Operations Integration Center. Marshall scientists also managed the Gravity Probe Band Hinode missions and launched NASA’s SERVIR geospatial observation system. Once primary space stationconstruction – and the 40-year shuttle program – concluded in the 2010s, Marshall took on oversight of NASA’s Space Launch System, led James Webb Space Telescope mirror testing, and delivered the orbiting Imaging X-ray Polarimetry Explorer.

As the 2020s continue, Marshall meets each new challenge with enthusiasm and expertise, preparing for the highly anticipated Artemis II crewed launch and a host of new science and discovery missions – and buoyed by strong industry partners and by the Huntsville community, which takes pride in being home to “Rocket City USA.”

“Humanity is on an upward, outward trajectory,” Pelfrey said. “And day after day, year after year, Marshall is setting the course to explore beyond tomorrow’s horizon.”

Read more about Marshall and its 65-year history:

https://www.nasa.gov/marshall

Hannah Maginot
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
hannah.l.maginot@nasa.gov  

Share

Details

Last Updated
Feb 24, 2025
Editor
Beth Ridgeway

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Former Johnson Director Jefferson Howell July 3, 2025
      Jefferson Davis Howell, Jr., former director of NASA’s Johnson Space Center in Houston, died July 2, in Bee Cave, Texas. He was 85 years old.
      Howell was a champion of the construction of the International Space Station, working on a deadline to complete the orbiting lab by 2004. He oversaw four space shuttle crews delivering equipment and hardware to reach that goal. He also served as director during a pivotal moment for the agency: the loss of STS-107 and the crew of space shuttle Columbia. He made it his personal responsibility to meet with the families, look after them, and attend memorial services, all while keeping the families informed of the accident investigation as it unfolded.
      “Gen. Howell led NASA Johnson through one of the most difficult chapters in our history, following the loss of Columbia and her crew,” said acting associate administrator Vanessa Wyche. “He brought strength and steady direction, guiding the workforce with clarity and compassion. He cared deeply for the people behind the mission and shared his leadership skills generously with the team. We extend our heartfelt condolences to his family and all who knew and loved him.”
      At the time of his selection as director, he was serving as senior vice president with Science Applications International Corporation (SAIC) as the program manager for the safety, reliability, and quality assurance contract at Johnson. Following the accident, he made it his mission to improve the relationship between the civil servant and contractor workforce. He left his position and the agency, in October 2005, shortly after the Return-to-Flight mission of STS-114.
      “General Howell stepped into leadership at Johnson during a pivotal time, as the International Space Station was just beginning to take shape. He led and supported NASA’s successes not only in space but here on the ground — helping to strengthen the center’s culture and offering guidance through both triumph and tragedy,” said Steve Koerner, Johnson Space Center’s acting director. “On behalf of NASA’s Johnson Space Center, we offer our deepest sympathies to his family, friends, and all those who had the privilege of working alongside him. The impact of his legacy will continue to shape Johnson for decades to come.”
      The Victoria, Texas, native was a retired lieutenant general in the U.S. Marine Corps with a decorated military career prior to his service at NASA. He flew more than 300 combat missions in Vietnam and Thailand.
      Howell is survived by his wife Janel and two children. A tree dedication will be held at NASA Johnson’s memorial grove in the coming year.
      -end-
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      chelsey.n.ballarte@nasa.gov
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Swept Wing Flow Test model, known as SWiFT, with pressure sensitive paint applied, sports a pink glow under ultraviolet lights while tested during 2023 in a NASA wind tunnel at Langley Research Center in Virginia.NASA / Dave Bowman Many of us grew up using paint-by-number sets to create beautiful color pictures.
      For years now, NASA engineers studying aircraft and rocket designs in wind tunnels have flipped that childhood pastime, using computers to generate images from “numbers-by-paint” – pressure sensitive paint (PSP), that is.
      Now, advances in the use of high-speed cameras, supercomputers, and even more sensitive PSP have made this numbers-by-paint process 10,000 times faster while creating engineering visuals with 1,000 times higher resolution.
      So, what’s the big difference exactly between the “old” capability in use at NASA for more than a decade and the “new?”
      “The key is found by adding a single word in front of PSP, namely ‘unsteady’ pressure sensitive paint, or uPSP,” said E. Lara Lash, an aerospace engineer from NASA’s Ames Research Center in California’s Silicon Valley.
      With PSP, NASA researchers study the large-scale effects of relatively smooth air flowing over the wings and body of aircraft. Now with uPSP, they are able to see in finer detail what happens when more turbulent air is present – faster and better than ever before.
      In some cases with the new capability, researchers can get their hands on the wind tunnel data they’re looking for within 20 minutes. That’s quick enough to allow engineers to adjust their testing in real time.
      Usually, researchers record wind tunnel data and then take it back to their labs to decipher days or weeks later. If they find they need more data, it can take additional weeks or even months to wait in line for another turn in the wind tunnel.
      “The result of these improvements provides a data product that is immediately useful to aerodynamic engineers, structural engineers, or engineers from other disciplines,” Lash said.
      Robert Pearce, NASA’s associate administrator for aeronautics, who recently saw a demonstration of uPSP-generated data displayed at Ames, hailed the new tool as a national asset that will be available to researchers all over the country.
      “It’s a unique NASA innovation that isn’t offered anywhere else,” Pearce said. “It will help us maintain NASA’s world leadership in wind tunnel capabilities.”
      A technician sprays unsteady pressure sensitive paint onto the surface of a small model of the Space Launch System in preparation for testing in a NASA wind tunnel.NASA / Dave Bowman How it Works
      With both PSP and uPSP, a unique paint is applied to scale models of aircraft or rockets, which are mounted in wind tunnels equipped with specific types of lights and cameras.
      When illuminated during tests, the paint’s color brightness changes depending on the levels of pressure the model experiences as currents of air rush by. Darker shades mean higher pressure; lighter shades mean lower pressure.
      Cameras capture the brightness intensity and a supercomputer turns that information into a set of numbers representing pressure values, which are made available to engineers to study and glean what truths they can about the vehicle design’s structural integrity.
      “Aerodynamic forces can vibrate different parts of the vehicle to different degrees,” Lash said. “Vibrations could damage what the vehicle is carrying or can even lead to the vehicle tearing itself apart. The data we get through this process can help us prevent that.”
      Traditionally, pressure readings are taken using sensors connected to little plastic tubes strung through a model’s interior and poking up through small holes in key places, such as along the surface of a wing or the fuselage. 
      Each point provides a single pressure reading. Engineers must use mathematical models to estimate the pressure values between the individual sensors.
      With PSP, there is no need to estimate the numbers. Because the paint covers the entire model, its brightness as seen by the cameras reveals the pressure values over the whole surface.
      A four-percent scale model of the Space Launch System rocket is tested in 2017 using unsteady Pressure Sensitive Paint inside the 11-foot by 11-foot Unitary Plan Wind Tunnel at NASA’s Ames Research Center in California.NASA / Dominic Hart Making it Better
      The introduction, testing, and availability of uPSP is the result of a successful five-year-long effort, begun in 2019, in which researchers challenged themselves to significantly improve the PSP’s capability with its associated cameras and computers.
      The NASA team’s desire was to develop and demonstrate a better process of acquiring, processing, and visualizing data using a properly equipped wind tunnel and supercomputer, then make the tool available at NASA wind tunnels across the country.
      The focus during a capability challenge was on NASA’s Unitary Plan Facility’s 11-foot transonic wind tunnel, which the team connected to the nearby NASA Advanced Supercomputing Facility, both located at Ames.
      Inside the wind tunnel, a scale model of NASA’s Space Launch System rocket served as the primary test subject during the challenge period.
      Now that the agency has completed its Artemis I uncrewed lunar flight test mission, researchers can match the flight-recorded data with the wind tunnel data to see how well reality and predictions compare.
      With the capability challenge officially completed at the end of 2024, the uPSP team is planning to deploy it to other wind tunnels and engage with potential users with interests in aeronautics or spaceflight.
      “This is a NASA capability that we have, not only for use within the agency, but one that we can offer industry, academia, and other government agencies to come in and do research using these new tools,” Lash said.
      NASA’s Aerosciences Evaluation and Test Capabilities portfolio office, an organization managed under the agency’s Aeronautics Research Mission Directorate, oversaw the development of the uPSP capability.
      Watch this uPSP Video
      About the Author
      Jim Banke
      Managing Editor/Senior WriterJim Banke is a veteran aviation and aerospace communicator with more than 40 years of experience as a writer, producer, consultant, and project manager based at Cape Canaveral, Florida. He is part of NASA Aeronautics' Strategic Communications Team and is Managing Editor for the Aeronautics topic on the NASA website.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      6 min read By Air and by Sea: Validating NASA’s PACE Ocean Color Instrument
      Article 1 week ago 3 min read NASA Intern Took Career from Car Engines to Cockpits
      Article 1 week ago 4 min read NASA Tech to Use Moonlight to Enhance Measurements from Space
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Jul 03, 2025 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Aerosciences Evaluation Test Capabilities Ames Research Center Flight Innovation Glenn Research Center Langley Research Center Transformational Tools Technologies
      View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning Since July 2022, NASA’s James Webb Space Telescope has been unwaveringly focused on our universe. With its unprecedented power to detect and analyze otherwise invisible infrared light, Webb is making observations that were once impossible, changing our view of the cosmos from the most distant galaxies to our own solar system.
      Webb was built with the promise of revolutionizing astronomy, of rewriting the textbooks. And by any measure, it has more than lived up to the hype — exceeding expectations to a degree that scientists had not dared imagine. Since science operations began, Webb has completed more than 860 scientific programs, with one-quarter of its time dedicated to imaging and three-quarters to spectroscopy. In just three years, it has collected nearly 550 terabytes of data, yielding more than 1,600 research papers, with intriguing results too numerous to list and a host of new questions to answer.
      Here are just a few noteworthy examples.
      1. The universe evolved significantly faster than we previously thought.
      Webb was specifically designed to observe “cosmic dawn,” a time during the first billion years of the universe when the first stars and galaxies were forming. What we expected to see were a few faint galaxies, hints of what would become the galaxies we see nearby.
      Instead, Webb has revealed surprisingly bright galaxies that developed within 300 million years of the big bang; galaxies with black holes that seem far too massive for their age; and an infant Milky Way-type galaxy that existed when the universe was just 600 million years old. Webb has observed galaxies that already “turned off” and stopped forming stars within a billion years of the big bang, as well as those that developed quickly into modern-looking “grand design” spirals within 1.5 billion years.
      Hundreds of millions of years might not seem quick for a growth spurt, but keep in mind that the universe formed in the big bang roughly 13.8 billion years ago. If you were to cram all of cosmic time into one year, the most distant of these galaxies would have matured within the first couple of weeks, rapidly forming multiple generations of stars and enriching the universe with the elements we see today.
      Image: JADES deep field
      A near-infrared image from NASA’s James Webb Space Telescope shows a region known as the JADES Deep Field. Tens of thousands of galaxies are visible in this tiny patch of sky, including Little Red Dots and hundreds of galaxies that existed more than 13.2 billion years ago, when the universe was less than 600 million years old. Webb also spotted roughly 80 ancient supernovae, many of which exploded when the universe was less than 2 billion years old. This is ten times more supernovae than had ever been discovered before in the early universe. Comparing these supernovae from the distant past with those in the more recent, nearby universe helps us understand how stars in these early times formed, lived, and died, seeding space with the elements for new generations of stars and their planets. NASA, ESA, CSA, STScI, JADES Collaboration 2. Deep space is scattered with enigmatic “Little Red Dots.”
      Webb has revealed a new type of galaxy: a distant population of mysteriously compact, bright, red galaxies dubbed Little Red Dots. What makes Little Red Dots so bright and so red? Are they lit up by dense groupings of unusually bright stars or by gas spiraling into a supermassive black hole, or both? And whatever happened to them? Little Red Dots seem to have appeared in the universe around 600 million years after the big bang (13.2 billion years ago), and rapidly declined in number less than a billion years later. Did they evolve into something else? If so, how? Webb is probing Little Red Dots in more detail to answer these questions.
      3. Pulsating stars and a triply lensed supernova are further evidence that the “Hubble Tension” is real.
      How fast is the universe expanding? It’s hard to say because different ways of calculating the current expansion rate yield different results — a dilemma known as the Hubble Tension. Are these differences just a result of measurement errors, or is there something weird going on in the universe? So far, Webb data indicates that the Hubble Tension is not caused by measurement errors. Webb was able to distinguish pulsating stars from nearby stars in a crowded field, ensuring that the measurements weren’t contaminated by extra light. Webb also discovered a distant, gravitationally lensed supernova whose image appears in three different locations and at three different times during its explosion. Calculating the expansion rate based on the brightness of the supernova at these three different times provides an independent check on measurements made using other techniques. Until the matter of the Hubble Tension is settled, Webb will continue measuring different objects and exploring new methods.
      4. Webb has found surprisingly rich and varied atmospheres on gas giants orbiting distant stars.
      While NASA’s Hubble Space Telescope made the first detection of gases in the atmosphere of a gas giant exoplanet (a planet outside our solar system), Webb has taken studies to an entirely new level. Webb has revealed a rich cocktail of chemicals, including hydrogen sulfide, ammonia, carbon dioxide, methane, and sulfur dioxide — none of which had been clearly detected in an atmosphere outside our solar system before. Webb has also been able to examine exotic climates of gas giants as never before, detecting flakes of silica “snow” in the skies of the puffy, searing-hot gas giant WASP-17 b, for example, and measuring differences in temperature and cloud cover between the permanent morning and evening skies of WASP-39 b.
      Image: Spectrum of WASP-107 b
      A transmission spectrum of the “warm Neptune” exoplanet WASP-107 b captured by NASA’s Hubble and Webb space telescopes, shows clear evidence for water, carbon dioxide, carbon monoxide, methane, sulfur dioxide, and ammonia in the planet’s atmosphere. These measurements allowed researchers to estimate the interior temperature and mass of the core of the planet, as well as understand the chemistry and dynamics of the atmosphere. NASA, ESA, CSA, Ralf Crawford (STScI) 5. A rocky planet 40 light-years from Earth may have an atmosphere fed by gas bubbling up from its lava-covered surface.
      Detecting, let alone analyzing, a thin layer of gas surrounding a small rocky planet is no easy feat, but Webb’s extraordinary ability to measure extremely subtle changes in the brightness of infrared light makes it possible. So far, Webb has been able to rule out significant atmosphere on a number of rocky planets, and has found tantalizing signs of carbon monoxide or carbon dioxide on 55 Cancri e, a lava world that orbits a Sun-like star. With findings like these, Webb is laying the groundwork for NASA’s future Habitable Worlds Observatory, which will be the first mission purpose-built to directly image and search for life on Earth-like planets around Sun-like stars.
      6. Webb exposes the skeletal structure of nearby spiral galaxies in mesmerizing detail.
      We already knew that galaxies are collections of stars, planets, dust, gas, dark matter, and black holes: cosmic cities where stars form, live, die, and are recycled into the next generation. But we had never been able to see the structure of a galaxy and the interactions between stars and their environment in such detail. Webb’s infrared vision reveals filaments of dust that trace the spiral arms, old star clusters that make up galactic cores, newly forming stars still encased in dense cocoons of glowing dust and gas, and clusters of hot young stars carving enormous cavities in the dust. It also elucidates how stellar winds and explosions actively reshape their galactic homes.
      Image: PHANGS Phantom Galaxy (M74/NGC 628)
      A near- to mid-infrared image from NASA’s James Webb Space Telescope highlights details in the complex structure of a nearby galaxy that are invisible to other telescopes. The image of NGC 628, also known as the Phantom Galaxy, shows spiral arms with lanes of warm dust (represented in red), knots of glowing gas (orange-yellow), and giant bubbles (black) carved by hot, young stars. The dust-free core of the galaxy is filled with older, cooler stars (blue). NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), PHANGS team 7. It can be hard to tell the difference between a brown dwarf and a rogue planet.
      Brown dwarfs form like stars, but are not dense or hot enough to fuse hydrogen in their cores like stars do. Rogue planets form like other planets, but have been ejected from their system and no longer orbit a star. Webb has spotted hundreds of brown-dwarf-like objects in the Milky Way, and has even detected some candidates in a neighboring galaxy. But some of these objects are so small — just a few times the mass of Jupiter — that it is hard to figure out how they formed. Are they free-floating gas giant planets instead? What is the least amount of material needed to form a brown dwarf or a star? We’re not sure yet, but thanks to three years of Webb observations, we now know there is a continuum of objects from planets to brown dwarfs to stars.
      8. Some planets might be able to survive the death of their star.
      When a star like our Sun dies, it swells up to form a red giant large enough to engulf nearby planets. It then sheds its outer layers, leaving behind a super-hot core known as a white dwarf. Is there a safe distance that planets can survive this process? Webb might have found some planets orbiting white dwarfs. If these candidates are confirmed, it would mean that it is possible for planets to survive the death of their star, remaining in orbit around the slowly cooling stellar ember.
      9. Saturn’s water supply is fed by a giant fountain of vapor spewing from Enceladus.
      Among the icy “ocean worlds” of our solar system, Saturn’s moon Enceladus might be the most intriguing. NASA’s Cassini mission first detected water plumes coming out of its southern pole. But only Webb could reveal the plume’s true scale as a vast cloud spanning more than 6,000 miles, about 20 times wider than Enceladus itself. This water spreads out into a donut-shaped torus encircling Saturn beyond the rings that are visible in backyard telescopes. While a fraction of the water stays in that ring, the majority of it spreads throughout the Saturnian system, even raining down onto the planet itself. Webb’s unique observations of rings, auroras, clouds, winds, ices, gases, and other materials and phenomena in the solar system are helping us better understand what our cosmic neighborhood is made of and how it has changed over time.
      Video: Water plume and torus from Enceladus
      A combination of images and spectra captured by NASA’s James Webb Space Telescope show a giant plume of water jetting out from the south pole of Saturn’s moon Enceladus, creating a donut-shaped ring of water around the planet.
      Credit: NASA, ESA, CSA, G. Villanueva (NASA’s Goddard Space Flight Center), A. Pagan (STScI), L. Hustak (STScI) 10. Webb can size up asteroids that may be headed for Earth.
      In 2024 astronomers discovered an asteroid that, based on preliminary calculations, had a chance of hitting Earth. Such potentially hazardous asteroids become an immediate focus of attention, and Webb was uniquely able to measure the object, which turned out to be the size of a 15-story building. While this particular asteroid is no longer considered a threat to Earth, the study demonstrated Webb’s ability to assess the hazard.
      Webb also provided support for NASA’s Double Asteroid Redirection Test (DART) mission, which deliberately smashed into the Didymos binary asteroid system, showing that a planned impact could deflect an asteroid on a collision course with Earth. Both Webb and Hubble observed the impact, serving witness to the resulting spray of material that was ejected. Webb’s spectroscopic observations of the system confirmed that the composition of the asteroids is probably typical of those that could threaten Earth.
      —-
      In just three years of operations, Webb has brought the distant universe into focus, revealing unexpectedly bright and numerous galaxies. It has unveiled new stars in their dusty cocoons, remains of exploded stars, and skeletons of entire galaxies. It has studied weather on gas giants, and hunted for atmospheres on rocky planets. And it has provided new insights into the residents of our own solar system.
      But this is only the beginning. Engineers estimate that Webb has enough fuel to continue observing for at least 20 more years, giving us the opportunity to answer additional questions, pursue new mysteries, and put together more pieces of the cosmic puzzle.
      For example: What were the very first stars like? Did stars form differently in the early universe? Do we even know how galaxies form? How do stars, dust, and supermassive black holes affect each other? What can merging galaxy clusters tell us about the nature of dark matter? How do collisions, bursts of stellar radiation, and migration of icy pebbles affect planet-forming disks? Can atmospheres survive on rocky worlds orbiting active red dwarf stars? Is Uranus’s moon Ariel an ocean world?
      As with any scientific endeavor, every answer raises more questions, and Webb has shown that its investigative power is unmatched. Demand for observing time on Webb is at an all-time high, greater than any other telescope in history, on the ground or in space. What new findings await?
      By Dr. Macarena Garcia Marin and Margaret W. Carruthers, Space Telescope Science Institute, Baltimore, Maryland
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Exoplanets



      Universe


      Share








      Details
      Last Updated Jul 02, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Black Holes Brown Dwarfs Exoplanet Science Exoplanets Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Nebulae Science & Research Star-forming Nebulae Stars Studying Exoplanets The Universe View the full article
    • By NASA
      Dwayne Lavigne works as a controls engineer at NASA’s Stennis Space Center, where he supports NASA’s Artemis mission by programming specialized computers for engine testing.NASA/Danny Nowlin As a controls engineer at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, Dwayne Lavigne does not just fix problems – he helps put pieces together at America’s largest rocket propulsion test site.
      “There are a lot of interesting problems to solve, and they are never the same,” Lavigne said. “Sometimes, it is like solving a very cool puzzle and can be pretty satisfying.”
      Lavigne programs specialized computers called programmable logic controllers. They are extremely fast and reliable for automating precisely timed operations during rocket engine tests as NASA Stennis supports the agency’s Artemis missions to explore the Moon and build the foundation for the first crewed mission to Mars.
      However, the system will not act unless certain parameters are met in the proper sequence. It can be a complex relationship. Sometimes, 20 or 30 things must be in the correct configuration to perform an operation, such as making a valve open or close, or turning a motor on or off.
      The Picayune, Mississippi, native is responsible for establishing new signal paths between test hardware and the specialized computers.
      He also develops the human machine interface for the controls. The interface is a screen graphic that test engineers use to interact with hardware.
      Lavigne has worked with NASA for more than a decade. One of his proudest work moments came when he contributed to development of an automated test sequencing routine used during all RS-25 engine tests on the Fred Haise Test Stand.
      “We’ve had many successful tests over the years, and each one is a point of pride,” he said.
      When Lavigne works on the test stand, he works with the test hardware and interacts with technicians and engineers who perform different tasks than he does. It provides an appreciation for the group effort it takes to support NASA’s mission.
      “The group of people I work with are driven to get the job done and get it done right,” he said.
      In total, Lavigne has been part of the NASA Stennis federal city for 26 years. He initially worked as a contractor with the Naval Oceanographic Office as a data entry operator and with the Naval Research Laboratory as a software developer.
      September marks 55 years since NASA Stennis became a federal city. NASA, and more than 50 companies, organizations, and agencies located onsite share in operating costs, which allows tenants to direct more of their funding to individual missions. 
      “Stennis has a talented workforce accomplishing many different tasks,” said Lavigne. “The three agencies I’ve worked with at NASA Stennis are all very focused on doing the job correctly and professionally. In all three agencies, people realize that lives could be at risk if mistakes are made or shortcuts are taken.”
      Learn More About Careers at NASA Stennis Explore More
      6 min read A Defining Era: NASA Stennis and Space Shuttle Main Engine Testing
      Article 1 month ago 4 min read NASA Stennis Releases First Open-Source Software
      Article 2 months ago 5 min read NASA Stennis Software is Built for Future Growth
      Article 2 months ago View the full article
    • By NASA
      2 Min Read NASA Announces Winners of 2025 Human Lander Challenge
      NASA’s Human Lander Challenge marked its second year on June 26, awarding $18,000 in prize money to three university teams for their solutions for long-duration cryogenic, or super chilled, liquid storage and transfer systems for spaceflight.
      Building on the crewed Artemis II flight test, NASA’s Artemis III mission will send astronauts to explore the lunar South Pole region with a human landing system and advanced spacesuits, preparing humanity to ultimately go to Mars. In-space propulsion systems that use cryogenic liquids as propellants must stay extremely cold to remain in a liquid state and are critical to mission success. The Artemis mission architecture will need these systems to function for several weeks or even months.
      Students and advisors with the 12 finalist teams for the 2025 Human Lander Challenge competed in Huntsville, Alabama, near the agency’s Marshall Space Flight Center between June 24-26. NASA/Charles Beason NASA announced Embry-Riddle Aeronautical University, Prescott as the overall winner and recipient of the $10,000 top prize award. Old Dominion University won second place and a $5,000 award, followed by Massachusetts Institute of Technology in third place and a $3,000 award.
      Before the winners were announced, 12 finalist teams selected in April gave their presentations to a panel of NASA and industry judges as part of the final competition in Huntsville. As part of the 2025 Human Lander Challenge, university teams developed systems-level solutions that could be used within the next 3-5 years for Artemis.
      NASA selected Embry-Riddle Aeronautical University, Prescott as the overall winner of NASA’s 2025 Human Lander Challenge Forum June 26. Lisa Watson-Morgan, manager of NASA’s Human Landing System Program, presented the awards at the ceremony. NASA/Charles Beason “Today’s Golden Age of Innovation and Exploration students are tomorrow’s mission designers, systems engineers, and explorers,” said Juan Valenzuela, main propulsion systems and cryogenic fluid management subsystems lead for NASA’s Human Landing System Program at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “The Human Lander Challenge concepts at this year’s forum demonstrate the ingenuity, passion, and determination NASA and industry need to help solve long-duration cryogenic storage challenges to advance human exploration to deep space.”
      The challenge is sponsored by the agency’s Human Landing System Program within the Exploration Systems Development Mission Directorate and managed by the National Institute of Aerospace.
      Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
      For more information about Artemis missions, visit:
      https://www.nasa.gov/artemis
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Jun 27, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Human Lander Challenge Artemis General Human Landing System Program Humans in Space Marshall Space Flight Center Explore More
      3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 1 week ago 4 min read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
      Article 2 months ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
      Article 3 months ago Keep Exploring Discover More Topics From NASA
      Human Landing System
      Space Launch System (SLS)
      Marshall Space Flight Center manages the Space Launch System (SLS), an integrated super heavy lift launch platform enabling a new…
      Humans In Space
      Orion Capsule
      NASA’s Orion spacecraft is built to take humans farther than they’ve ever gone before. Orion will serve as the exploration…
      View the full article
  • Check out these Videos

×
×
  • Create New...