Jump to content

Recommended Posts

  • Publishers
Posted
eo-meeting-summary-banner.png?w=1037

35 min read

Summary of the Joint NASA LCLUC–SARI Synthesis Meeting

Introduction

The NASA Land-Cover and Land-Use Change (LCLUC) is an interdisciplinary scientific program within NASA’s Earth Science program that aims to develop the capability for periodic global inventories of land use and land cover from space. The program’s goal is to develop the mapping, monitoring and modeling capabilities necessary to simulate the processes taking place and evaluate the consequences of observed and predicted changes. The South/Southeast Asia Research Initiative (SARI) has a similar goal for South/Southeast Asia, as it seeks to develop innovative regional research, education, and capacity building programs involving state-of-the-art remote sensing, natural sciences, engineering, and social sciences to enrich land use/cover change (LUCC) science in South/Southeast Asia. Thus it makes sense for these two entities to periodically meet jointly to discuss their endeavors.

The latest of these joint meetings took place January 1–February 2, 2024, in Hanoi, Vietnam. A total of 85 participants attended the three-day, in-person meeting—see Photo.  A total of 85 participants attended the three-day, in-person meeting. The attendees represented multiple international institutions, including NASA (Headquarters and Centers), the University of Maryland, College Park (UMD), other American academic institutions, the Vietnam National Space Center (VNSC, the event host), the Vietnam National University’s University of Engineering and Technology, and Ho Chi Minh University of Technology, the Japanese National Institute of Environmental Studies (NIES), Center for Environmental Sciences, and the University of Tokyo. In addition, several international programs participated, including GEO Global Agricultural Monitoring (GEOGLAM), the System for Analysis, Research and Training (START), Global Observation of Forest and Land-use Dynamics (GOFC–GOLD), and NASA Harvest.

LCLUC photo
Photo. A group picture of the meeting participants on the first day of the 2024 LCLUC SARI meeting in Hanoi, Vietnam.
Photo credit: Hotel staff (Hanoi Club Hotel, Hanoi, Vietnam)

Meeting Overview

The purpose of the 2024 NASA LCLUC–SARI Synthesis meeting was to discuss LUCC issues – with a particular focus on their impact on Southeast Asian countries. Presenters highlighted ongoing projects aimed to advance our understanding of the spatial extent, intensity, social consequences, and impacts on the environment in South/Southeast Asian countries. While presenters reported on specific science results, they also were intentional to review and synthesize work from other related projects going on in Southeast Asia. 

Meeting Goal

The meeting’s overarching goal was to create a comprehensive and holistic understanding of various LUCC issues by examining them from multiple angles, including: collating information; employing interdisciplinary approaches; integrating research; identifying key insights; and enhancing regional collaborations. The meeting sought to bring the investigators together to bridge gaps, promote collaborations, and advance knowledge regarding LUCC issues in the region. The meeting format also provided ample time between sessions for networking to promote coordination and collaboration among scientists and teams. 

Meeting and Summary Format

The meeting consisted of seven sessions that focused on various LUCC issues. The summary report that follows is organized by day and then by session. All presentations in Session I and II are summarized (i.e., with all speakers, affiliations, and appropriate titles identified). The keynote presentation(s) from Sessions III–VI are summarized similarly. The technical presentations in each of these sessions are presented as narrative summaries. Session VII consisted of topical discussions to close out the meeting and summaries of these discussions are included herein. Sessions III–VI also included panel discussions, but to keep the article length more manageable, summaries of these discussions have been omitted. Readers interested in learning more about the panel discussions or viewing any of these presentations in full can access the information on the Joint LCLUC–SARI Synthesis meeting website.

DAY ONE

The first day of the meeting included welcoming remarks from the U.S. Ambassador to Vietnam (Session I), program executives of LCLUC and SARI,  as well as from national space agencies in South and Southeast Asia (Session II), and other LCLUC-thematic/overview presentations (Session III).

Session 1: Welcoming Remarks

Garik Gutman [NASA Headquarters—LCLUC Program Manager], Vu Tuan [VNSC’s Vietnam Academy of Science and Technology (VAST)—Vice Director General], Chris Justice [University of Maryland, College Park (UMD)—LCLUC Program Scientist], Matsunaga Tsuneo [National Institute of Environmental Studies (NIES), Japan], and Krishna Vadrevu [NASA’s Marshall Space Flight Center—SARI Lead] delivered opening remarks that highlighted collaborations across air pollution, agriculture, forestry, urban development, and other LUCC research areas. While each of the speakers covered different topics, they emphasized common themes, including advancing new science algorithms, co-developing products, and fostering applications through capacity building and training.

After the opening remarks, special guest Marc Knapper [U.S. Ambassador to Vietnam] gave a presentation in which he emphasized the value of collaborative research between U.S. and Vietnamese scientists to address environmental challenges – especially climate change and LUCC issues. He expressed appreciation to the meeting organizers for promoting these collaborations and highlighted the joint initiatives between NASA and the U.S. Agency for International Development (USAID) to monitor environmental health and climate change, develop policies to reduce emissions, and support adaptation in agriculture. The U.S.–Vietnam Comprehensive Strategic Partnership emphasizes the commitment to address climate challenges and advance bilateral research. He concluded by encouraging active participation from all attendees and stressed the need for ongoing international collaboration to develop effective LUCC policies.

Session-II: Programmatic and Space Agency Presentations

NOTE: Other than Ambassador Knapper, the presenters in Session I gave welcoming remarks and programmatic and/or space agency presentations in Session II,.

Garik Gutman began the second session by presenting an overview of the LCLUC program, which aims to enhance understanding of LUCC dynamics and environmental implications by integrating diverse data sources (i.e., satellite remote sensing) with socioeconomic and ecological datasets for a comprehensive view of land-use change drivers and consequences. Over the past 25 years, LCLUC has funded over 325 projects involving more than 800 researchers, resulting in over 1500 publications. The program’s focus balances project distribution that spans detection and monitoring, and impacts and consequences, including drivers, modeling, and synthesis. Gutman highlighted examples of population growth and urban expansion in Southeast Asia, resulting in environmental and socio-economic impacts. Urbanization accelerates deforestation, shifts farming practices to higher-value crops, and contributes to the loss of wetlands. This transformation alters the carbon cycle, degrades air quality, and increases flooding risks due to reduced rainwater absorption. Multi-source remote sensing data and social dimensions are essential in addressing LUCC issues, and the program aims to foster international collaborations and capacity building in land-change science through partnerships and training initiatives. (To learn more about the recent activities of the LCLUC Science Team, see Summary of the 2024 Land Cover Land Use Change Science Team Meeting.)

Krishna Vadrevu explained how SARI connects regional and national projects with researchers from the U.S. and local institutions to advance LUCC mapping, monitoring, and impact assessments through shared methodologies and data. The initiative has spurred extensive activities, including meetings, training sessions, publications, collaborations, and fieldwork. To date, the LCLUC program has funded 35 SARI projects and helped build collaborations with space agencies, universities, and decision-makers worldwide. SARI Principal Investigators have documented notable land-cover and land-use transformations, observing shifts in land conversion practices across Asia. For example, the transition from traditional slash-and-burn practices for subsistence agriculture to industrial oil palm and rubber plantations in Southeast Asia. Rapid urbanization has also reshaped several South and Southeast Asian regions, expanding both horizontally in rural areas and vertically in urban centers. The current SARI solicitation funds three projects across Asia, integrating the latest remote sensing data and methods to map, monitor, and assess LUCC drivers and impacts to support policy-making.

Vu Tuan provided a comprehensive overview of Vietnam’s advances in satellite technology and Earth observation capabilities, particularly through the LOTUSat-1 satellite (name derived from the “Lotus” flower), which is equipped with an advanced X-band Synthetic Aperture Radar (SAR) sensor capable of providing high-resolution imagery [ranging from 1–16 m (3–52 ft)]. This satellite is integral to Vietnam’s efforts to enhance disaster management and climate change mitigation, as well as to support a range of applications in topography, agriculture, forestry, and water management, as well as in oceanography and environmental monitoring. The VNSC’s efforts are part of a broader strategy to build national expertise and self-reliance in satellite technology, such as developing a range of small satellites (e.g., NanoDragon, PicoDragon, and MicroDragon) that progress in size and capability. Alongside satellite development, the VNSC has established key infrastructure, facilities, and capacity building in Hanoi, Nha Trang, and Ho Chi Minh City to support satellite assembly, integration, testing, and operation. Tuan showcased the application of remotely sensed LUCC data to map and monitor urban expansion in Ha Long city from 2000–2023 and the policies needed to manage these changes sustainably – see Figure 1.

LCLUC figure 1
Figure 1. Urban expansion area in Ha Long City, Vietnam from 2000–2023 from multidate Landsat satellite imagery.
Figure credit: Vu Tuan [VNSC]

Tsuneo Matsunaga provided a detailed overview of Japan’s Greenhouse Gases Observing Satellite (GOSAT) series of satellites, data from which provide valuable insights into global greenhouse gas (GHG) trends and support international climate agreements, including the Paris Agreement.

Matsunaga reviewed the first two satellites in the series: GOSAT and GOSAT-2, then previewed the next satellite in the series: GOSAT-GW, which is scheduled to launch in 2025. GOSAT-GW will fly the Total Anthropogenic and Natural Emissions Mapping Observatory–3 (TANSO-3) – an improved version of TANSO-2, which flies on GOSAT-2. TANSO-3 includes a Fourier Transform Spectrometer (FTS-3) that has improved spatial resolution [10.5 km (6.5 mi)] over TANSO-FTS-2 and precision that matches or exceeds that of its predecessor. TANSO-FTS-3 will allow estimates with precision better than 1 ppm for carbon dioxide (CO2) and 10 ppb for methane (CH4), as well as enabling nitrogen dioxide (NO2) measurements. GOSAT–GW will also fly the Advanced Microwave Scanning Radiometer (AMSR3) that will monitor water cycle components (e.g., precipitation, soil moisture) and ocean surface winds. AMSR3 builds on the heritage of three previous AMSR instruments that have flown on NASA and Japan Aerospace Exploration Agency (JAXA) missions.

Matsunaga also highlighted the importance of ground-based validation networks, such as the Total Carbon Column Observing Network, COllaborative Carbon Column Observing Network, and the Pandora Global Network, to ensure satellite data accuracy.

Son Nghiem [NASA/Jet Propulsion Laboratory (JPL)] addressed dynamic LUCC in Cambodia, Laos, Thailand, Vietnam, and Malaysia. The synthesis study examined the factors that evolve along the rural–urban continuum (RUC). Nghiem showcased this effort using Synthetic Aperture Radar (SAR) data from the Copernicus Sentinel-1 mission to map a typical RUC in Bac Lieu, Vietnam – see Figure 2.

LCLUC figure 2
Figure 2. Land cover map of Bae Lieu, Vietnam, and surrounding rural areas. The image shows persistent building structures (red), agricultural areas (light green), aquacultural (light blue), tree cover (dark green), and water bodies (dark blue). Land-use classes used on this map are derived from Sentinel-1 Synthetic Aperture Radar (SAR) for the rural urban continuum around Bac Lieu.
Figure credit: Son Nghiem [JPL]

Nghiem described the study, which examined the role of rapid urbanization, agricultural conversion, climate change, and environment–human feedback processes in causing non-stationary and unpredictable impacts. This work illustrates how traditional trend analysis is insufficient for future planning. The study also examined whether slower or more gradual changes could inform policy development. To test these hypotheses, his research will integrate high-resolution radar and hyperspectral data with socioeconomic analyses. The study highlights the need for policies that are flexible and responsive to the unique challenges of different areas, particularly in “hot-spot” regions experiencing rapid changes.

Peilei Fan [Tufts University] presented a study that synthesizes the complex patterns of LUCC, identifying both the spatial and temporal dynamics that characterize transitions in urban systems. The study explores key drivers, including economic development, population growth, urbanization, agricultural expansion, and policy shifts. She emphasized the importance of understanding these drivers for sustainable land management and urban planning. For example, the Yangon region of Myanmar has undergone rapid urbanization – see Figure 3. Her work reveals the need for integrated approaches that consider both urban and rural perspectives to manage land resources effectively and mitigate negative environmental and social impacts. Through a combination of case studies, statistical analysis, and policy review, Fan and her team aim to provide a nuanced understanding of the interactions between human activities and environmental changes occurring in the rapidly transforming landscapes of Southeast Asia.

LCLUC figure 3
Figure 3. Landsat data can be used to track land cover change over time. For example, Thematic Mapper data have been used to track urban expansion around Yangon, Myanmar. The data show that the built-up area expanded from 161 km2 (62 mi2) in 1990 to 739 km2 (285 mi2) in 2020.
Figure credit: Peleli Fan [Tufts University]

Session III: Land Cover/Land Use Change Studies

Tanapat Tanaratkaittikul [Geo-Informatics and Space Technology Development Agency (GISTDA), Thailand] highlighted GISTDA activities, which play a crucial role in advancing Thailand’s technological capabilities and addressing both national and global challenges, including Thailand Earth Observation System (THEOS) and its successors: THEOS-2 and THEOS-2A. THEOS-1, which launched in 2008, provides 2-m (6-ft) panchromatic and 15-m (45-ft) multispectral resolution with a 26-day revisit cycle, which can be reduced to 3 days with off-nadir pointing. Launched in 2023, THEOS-2 includes two satellites – THEOS-2A [a very high-resolution satellite with 0.5-m (1.5-ft) panchromatic and 2-m (6-ft) multispectral imagery] and THEOS-2B [a high-resolution satellite with 4-m (12-ft) multispectral resolution] – with a five-day revisit cycle. GISTDA also develops geospatial applications for drought assessment, flood prediction, and carbon credit calculations to support government decision-making and climate initiatives. GISTDA partners with international collaborators on regional projects, such as the Lancang-Mekong Cooperation Special Fund Project.

Eric Vermote [NASA’s Goddard Space Flight Center] presented a keynote that focused on atmospheric correction of land remote sensing data and related algorithm updates. He highlighted the necessity of correcting surface imaging for atmospheric effects, such as molecular scattering, aerosol scattering, and gaseous absorption, which can significantly distort the satellite spectral signals and lead to potential errors in applications, such as land cover mapping, vegetation monitoring, and climate change studies.

Vermote explained that the surface reflectance algorithm uses precise vector radiative transfer modeling to improve accuracy by incorporating atmospheric parameter inversion. It also adjusts for various atmospheric conditions and aerosol types – enhancing corrections across regions and seasons. He explained that SkyCam – a network of ground-based cameras – provides real-time assessments of cloud cover that can be used to validate cloud masks, while the Cloud and Aerosol Measurement System (CAMSIS) offers additional ground validation by measuring atmospheric conditions. He said that together, SkyCam and CAMSIS improve satellite-derived cloud masks, supporting more accurate climate models and environmental monitoring. Vermote’s work highlights the ongoing advancement of atmospheric correction methods in remote sensing.

Other presentations in this session included one in which the speaker described how Yangon, the capital city in Myanmar, is undergoing rapid urbanization and industrial growth. From 1990–2020, the urban area expanded by over 225% – largely at the expense of agricultural and green lands. Twenty-nine industrial zones cover about 10.92% of the city, which have attracted significant foreign direct investment, particularly in labor-intensive sectors. This growth has led to challenges with land confiscations, inadequate infrastructure, and environmental issues (e.g., air pollution). Additionally, rural migration for employment has resulted in informal settlements, emphasizing the need for comprehensive urban planning that balances economic development with social equity and sustainability.

Another presentation highlighted varying LUCC trends across Vietnam. In the Northern and Central Coastal Uplands, for example, swidden systems are shifting toward permanent tree crops, such as rubber and coffee. Meanwhile, the Red River Delta is seeing urban densification and consolidation of farmland – transitioning from rice to mixed farming with increased fruit and flower production. Similarly, the Central Coastal Lowlands and Southeastern regions are experiencing urban growth and a shift from coastal agriculture – in this case, to shrimp farming – leading to mangrove loss. The Central Highlands is moving from swidden to tree crops, particularly fruit trees, while the Mekong River Delta is increasing rice cropping and aquaculture. These changes contribute to urbanization, altered farming practices, and biodiversity loss. Advanced algorithms (e.g., the Time-Feature Convolutional Neural Network model) are being used to effectively map these varied LUCC changes in Vietnam.

Another presenter explained how 10-m (33-ft) resolution spatially gridded population datasets are essential to address LUCC in environmental and socio-demographic research. There was also a demonstration of PopGrid, which is a collaborative initiative that provides access to various global-gridded population databases, which are valuable for regional LUCC studies and can support informed decision-making and policy development.

DAY TWO

The second day’s presentations centered around urban LUCC (Session IV) as well as interconnections between agriculture and water resources. (Session V).

Session IV: Urban Land Cover/Land Use Change

Gay Perez [Philippines Remote Sensing Agency (PhilSA)] presented a keynote focused on PhilSA’s mission to advance Philippines as a space-capable country by developing indigenous satellite and launch technologies. He explained that PhilSA provides satellite data in various categories, including sovereign, commercial, open-access, and disaster-activated. He noted that the ground infrastructure – which includes three stations and a new facility in Quezon – supports efficient data processing. For example, Perez stated that in 2023, PhilSA produced over 10,000 maps for disaster relief, agricultural assessments, and conservation planning.

Perez reviewed PhilSA’s Diwata-2 mission, which launched in 2018 and operates in a Sun-synchronous orbit around 620 km (385 mi) above Earth. With a 10-day revisit capability, it features a high-precision telescope [4.7 m (15ft) resolution], a multispectral imager with four bands, an enhanced resolution camera, and a wide-field camera. Since launch, Diwata-2 has captured over 100,000 global images, covering 95% of the Philippines. Looking to the near future, Perez reported that PhilSA’s launch of the Multispectral Unit for Land Assessment (MULA) satellite is planned for 2025. He explained that MULA will capture images with a 5-m (~16-ft) resolution and 10–20-day revisit time, featuring 10 spectral bands for vegetation, water, and urban analysis.

Perez also described the Drought and Crop Assessment and Forecasting project, which addresses drought risks and mapping ground motion in areas, e.g., Baguio City and Pangasinan. Through partnerships in the Pan-Asia Partnership for Geospatial Air Pollution Information (PAPGAPI) and the Pandora Asia Network, PhilSA monitors air quality across key locations, tracking urban pollution and cross-border particulate transport. PhilSA continues to strengthen Southeast Asian partnerships to drive sustainable development in the region.

Jiquan Chen [Michigan State University] presented the second keynote address, which focused on the Urban Rural Continuum (URC). Chen emphasized the importance of synthesizing studies that explore factors such as population dynamics, living standards, and economic development in the URC. Key considerations include differentiating between two- and three-dimensional infrastructures and understanding constraints from historical contexts. Chen highlighted critical variables from his analysis including net primary productivity, household income, and essential infrastructure elements, such as transportation and healthcare systems. He advocated for integrated models that combine mechanistic and empirical approaches to grasp the dynamics of URC changes, stressing their implications for urban planning, environmental sustainability, and social equity. He concluded with a call for collaboration to enhance these models and tackle challenges arising from the changing urban–rural landscape.

Tep Makathy [Cambodian Institute For Urban Studies] discussed urbanization in Phnom Penh, Cambodia. He explained that significant LUCC and infrastructure developments have been fueled by direct foreign investment; however, this development has resulted in environmental degradation, urban flooding, and infrastructure strain. Tackling pollution, congestion, preservation of green spaces, and preserving the historical heritage of the city will require sustainable urban planning efforts.

Nguyen Thi Thuy Hang [Vietnam Japan University, Vietnam National University, Hanoi] explained how flooding poses a significant annual threat to infrastructure and livelihoods in Can Tho, Vietnam. Therefore, it is essential to incorporate climate change considerations into land-use planning by enhancing the accuracy of vegetation layer classifications. Doing so will improve the representation of land-cover dynamics in models that decision-makers use when planning urban development. In addition, Hang reported that a more comprehensive survey of dyke systems will improve flood protection and identify areas needing reinforcement or redesign. These studies could also explore salinity intrusion in coastal agricultural areas that could impact crop yields and endanger food security.

In this session, two presenters highlighted how SAR data, which uses high backscatter to enhance the radar signal, is being used to assist with mapping urban areas in their respective countries. The phase stability and orientation of building structures across SAR images aid in consistent monitoring and backscatter, producing distinct image textures specific to urban settings. Researchers can use this heterogeneity and texture to map urban footprints, enabling automated discrimination between urban and non-urban areas. The first presenters showed how Interferometric Synthetic Aperture Radar techniques, such as Small Baseline Subset (SBAS) and Persistent Scatterer (PS) have been highly effective for mapping and monitoring land subsidence in coastal and urban areas in Vietnam. This approach has been applied to areas along the Saigon River as well as in Ho Chi Minh, Vietnam. The second presenter described an approach (using SAR data with multitemporal coherence and the K-means classification method) that has been used effectively to study urban growth in the Denpasar Greater Area of Indonesia between 2016 and 2022. The technique identified the conversion of 4376 km2 (1690 mi2) of rural to built-up areas, averaging 72.9 hectares (0.3 mi2) per year. Urban sprawl was predominantly observed in the North Kuta District, where the shift from agricultural to built-up land use has been accompanied by severe traffic congestion and other environmental issues.

Another presenter showed how data from the QuikSCAT instrument, which flew on the Quick Scatterometer satellite, and from the Sentinel-1 C-band SAR can be combined to measure and analyze urban built-up volume, specifically focusing on the vertical growth of buildings across various cities. By integrating these datasets, researchers can assess urban expansion, monitor the development of high-rise buildings, and evaluate the impact of urbanization on infrastructure and land use. This information is essential for urban planning, helping city planners and policymakers make informed decisions to accommodate growing populations and enhance sustainable urban development.

Session V – LUCC, Agriculture, and Water Resources

Chris Justice presented the keynote for this session, in which he addressed the GEOGLAM initiative and the NASA Harvest program. GEOGLAM, initiated by the G20 Agriculture Ministers in 2011, focuses on agriculture and food security to increase market transparency and improve food security. These efforts leverage satellite-based Earth observations to produce and disseminate timely, relevant, and actionable information about agricultural conditions at national, regional, and global scales to support agricultural markets and provide early warnings for proactive responses to emerging food emergencies. NASA Harvest uses satellite Earth observations to benefit global food security, sustainability, and agriculture for disaster response, climate risk assessments, and policy support. Justice also emphasized the use of open science and open data principles, promoting the integration of Earth observation data into national and international agricultural monitoring systems. He also discussed the development and application of essential agricultural variables, in situ data requirements, and the need for comprehensive and accurate satellite data products.

During this session, another presentation focused on how VNSC is engaged in several agricultural projects, including mapping rice crops, estimating yields, and assessing environmental impacts. VNSC has created high-accuracy rice maps for different seasons that the Vietnamese government uses to monitor and manage agricultural production. Current initiatives involve using satellite data to estimate CH4 emissions from rice paddies, biomass mapping, and monitoring rice straw burning. For example, in the Mekong Delta, numerous environmental factors, including climate change-induced stress (e.g., sea-level rise), flooding, drought, land subsidence, and saltwater intrusion, along with human activities like dam construction, sand mining, and groundwater extraction, threaten the sustainability of rice farming and farmer livelihoods. To address these challenges, sustainable agricultural practices are essential to improving rice quality, diversify farming systems, adopt low-carbon techniques, and enhance water management.

Presentations highlighted the importance of both optical and SAR data for LUCC studies, particularly in mapping agricultural areas. A study using Landsat time-series data demonstrated its value in monitoring agricultural LUCC in Houa Phan Province, Laos, and Son La Province, Vietnam. Land cover types were classified through spectral pattern analysis, identifying distinct classes based on Landsat reflectance values. The findings revealed significant natural forest loss alongside increases in cropland and forest plantations due to agricultural expansion. High-resolution imagery validated these results, indicating the scalability of this approach for broader regional and global land-cover monitoring. Another study showcased the effectiveness of SAR data from the Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) on the Japanese Advanced Land Observing Satellite-2 (ALOS-2) for mapping and monitoring agricultural land use in Suphanburi, Thailand. This data proved particularly useful for capturing seasonal variations and diverse agricultural practices. Supervised machine learning methods, such as Random Forest classifiers, combined with innovative spatial averaging techniques, achieved high accuracy in distinguishing various agricultural conditions.

In the session, presenters also discussed the use of Sentinel-1 SAR data for mapping submerged and non-submerged paddy soils was highlighted, demonstrating its effectiveness in understanding water management issues see – Figure 4. Additionally, large-scale remote sensing data and cloud computing were shown to provide unprecedented opportunities for tracking agricultural land-use changes in greater detail. Case studies from India and China illustrated key challenges, such as groundwater depletion in irrigated agriculture across the Indo-Ganges region and the impacts on food, water, and air quality in both countries.

LCLUC figure 4
Figure 4. Series of Sentinel-1 radar data images showing submerged paddy soil (blue) and non-submerged paddy soil (red) in the Mekong Delta, Vietnam.
Figure credit: Hiranori Arai [International Rice Research Institute]

The session also focused on Water–Energy–Food (WEF) issues related to the Mekong River Basin’s extensive network of hydroelectric dams, which present both benefits and challenges. While these dams support sectors such as irrigated agriculture and hydropower, they also disrupt vital ecosystem services, including fish habitats and biodiversity. Collaborative studies integrating satellite and ground data, hydrological models, and socio-economic frameworks highlight the need to balance these benefits with ecological and social costs. Achieving sustainable management requires cross-sectoral and cross-border cooperation, as well as the incorporation of traditional knowledge to address WEF trade-offs and governance challenges in the region.

DAY THREE

The third day included a session that explored the impacts of fire, GHG emissions, and pollution (Session VI) as well as a summary discussion on synthesis (Session VII).

Session VI: Fires, Greenhouse Gas Emissions, and Pollution

Chris Elvidge [Colorado School of Mines] presented a keynote on the capabilities and applications of the Visible Infrared Imaging Radiometer Suite (VIIRS) Nightfire [VNF] system, an advanced satellite-based tool developed by the Earth Observation Group. VIIRS Nightfire uses four near- and short-wave infrared channels, initially designed for daytime imaging, to detect and monitor infrared emissions at night. The system identifies various combustion sources, including both flaming and non-flaming activities (e.g., biomass burning, gas flaring, and industrial processes). It calculates the temperature, source area, and radiant heat of detected infrared emitters using physical laws to enable precise monitoring of combustion events and provide insight into exothermic and endothermic processes.

Elvidge explained that VNF has been vital for near-real-time data in Southeast Asia. The system has been used to issue daily alerts for Vietnam, Thailand, and Indonesia. Recent updates in Version 4 (V4) include atmospheric corrections and testing for secondary emitters with algorithmic improvements – with a 50% success rate in identifying additional heat sources. The Earth Observation Group maintains a multiyear catalog of over 20,000 industrial infrared emitters available through the Global Infrared Emitter Explorer (GIREE) web-map service. With VIIRS sensors expected to operate until about 2040 on the Joint Polar Satellite System (JPSS) platforms, this system ensures long-term, robust monitoring and analysis of global combustion events, proving essential for tracking the environmental impacts of industrial activities and natural combustion processes on the atmosphere and ecosystems.

Toshimasa Ohara [Center for Environmental Science, Japan—Research Director] continued with the second keynote and provided an in-depth analysis of long-term trends in anthropogenic emissions across Asia. The regional mission inventory in Asia encompasses a range of pollutants and offers detailed emissions data from 1950–2020 at high spatial and temporal resolutions. The study employs both bottom-up and top-down approaches for estimating emissions, integrating satellite observations to validate data and address uncertainties. Notably, emissions from China, India, and Japan have shown signs of stabilization or reduction, attributed to stricter emission control policies and technological advancements. Ohara also highlighted Japan’s effective air pollution measures and the importance of extensive observational data in corroborating emission trends. His presentation emphasized the need for improved methodologies in emission inventory development and validation across Asia, aiming to enhance policymaking and environmental management in rapidly industrializing regions.

Several presenters during this session focused on innovative approaches to understand and mitigate GHG emissions and air pollution. One presenter showed how NO2 data from the TROPOspheric Monitoring Instrument (TROPOMI) on the European Sentinel-5 Precursor have been validated against ground-based observations from Pandora stations in Japan, highlighting the influence of atmospheric conditions on measurement accuracy. Another presenter described an innovative system that GISTDA used to combine satellite remote sensing data with Artificial Intelligence (AI). This system was used to monitor and analyze the concentration of fine particulate matter (PM) in the atmosphere in Thailand. (In this context fine is defined as particles with diameters ≤ 2.5 µm, or PM2.5.) These applications, which are accessible through online, cloud-based platforms and mobile applications for iOS and Android devices, allow users, including citizens, government officers, and policymakers, to access PM2.5 data in real-time through web and mobile interfaces.

A project under the United Nations Economic and Social Commission for Asia and the Pacific in Thailand is focused on improving air quality monitoring across the Asia–Pacific region by integrating satellite and ground-based data. At the core of this effort, the Pandora Asia Network, which includes 30 ground-based instruments measuring pollutants such as NO₂ and sulfur dioxide (SO₂), is complemented by high-resolution observations from the Geostationary Environment Monitoring Spectrometer (GEMS) aboard South Korea’s GEO-KOMPSAT-2B (GK-2B) satellite. The initiative also provides training sessions to strengthen regional expertise in remote sensing technologies for air quality management and develops decision support systems for evidence-based policymaking, particularly for monitoring pollution sources and transboundary effects like volcanic eruptions. Future plans include expanding the Pandora network and enhancing data integration to support local environmental management practices.

PM2.5 levels in Vietnam are influenced by both local emissions and long-range pollutant transport, particularly in urban areas.The Vietnam University of Engineering and Technology, in conjunction with VNSC, continues to map and monitor PM2.5 using satellites and machine learning while addressing data quality issues that stem from missing satellite data and limited ground monitoring stations – see Figure 5.

In addition to mapping and monitoring pollutants, another presentater explained that significant research is underway to address their health impacts. In Hanoi, exposure to pollutants ( e.g., PM2.5, PM10, and NO2) has led to increased rates of respiratory diseases (e.g., pneumonia, bronchitis, and asthma) among children,  as well as elevated instances of cardiovascular diseases among adults. A substantial mortality burden is attributable to fine particulate matter – particularly in densely populated areas like Hanoi. Compliance with stricter air quality guidelines could potentially prevent thousands of premature deaths. For example, preventive measures enacted during the COVID-19 pandemic resulted in reduced pollution levels that were associated with a decrease in avoidable mortality rates. In response to these challenges, Vietnam has implemented air quality management policies, including national technical regulations and action plans aimed at controlling emissions and enhancing monitoring; however, current national standards still fall short of the more stringent guidelines recommended by the World Health Organization. Improved air quality standards and effective policy interventions are needed to mitigate the health risks associated with air pollution in Vietnam.

LCLUC figure 5
Figure 5. Map of particulate matter (PM 2.5) variations observed across Vietnam, using multisatellite aerosol optical depth (AOD) data from the Moderate Resolution Imaging Spectrogradiometer (MODIS) on NASA’s Aqua and Terra platforms, and from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA–NOAA Suomi NPP platform, combined with ground-based AOD and meteorological data.
Figure credit: Thanh Nguyen [Vietnam National University of Engineering and Technology, Vietnam]

Another presenter explained how food production in Southeast Asia contributes about 40% of the region’s total GHG emissions – with rice and beef production identified as the largest contributors for plant-based and animal-based emissions, respectively. Another presentation focused on a study that examined GHG emissions from agricultural activities, which suggests that animal-based food production – particularly beef – generates substantially higher GHG emissions per kg of food produced compared to plant-based foods, such as wheat and rice. Beef has an emission intensity of about 69 kg of CO2 equivalent-per-kg, compared to 2 to 3 kg of CO2 equivalent-per-kg for plant-based foods. The study points to mitigation strategies (e.g., changing dietary patterns, improving agricultural practices) and adopting sustainable land management. Participants agreed that a comprehensive policy framework is needed to address the environmental impacts of food production and reduce GHG emissions in the agricultural sector.

In another presentation, the speaker highlighted the fact that Southeast Asian countries need an advanced monitoring, reporting, and verification system to track GHG emissions – particularly within high-carbon reservoirs like rice paddies. To achieve this, cutting-edge technologies (e.g., satellite remote sensing, low-cost unmanned aerial vehicles, and Internet of Things devices) can be beneficial in creating sophisticated digital twin technology for sustainable rice production and GHG mitigation.

Another presentation featured a discussion about pollution resulting from forest and peatland fires in Indonesia, which is significantly impacting air quality. Indonesia’s tropical peatlands – among the world’s largest and most diverse – face significant threats from frequent fires. Repeated burning has transformed forests into shrubs and secondary vegetation regions, with fires particularly affecting forest edges and contributing to a further retreat of intact forest areas. High-resolution data is essential to map and monitor changes in forest cover, including pollution impacts.

Another speaker described a web-based Geographic Information Systems (GIS) application that has been developed to support carbon offsetting efforts in Laos – to address significant environmental challenges, e.g., deforestation and climate change. Advanced technologies (e.g., remote sensing, GIS, and Global Navigation Satellite Systems) are used to monitor land-use changes, carbon sequestration, and ecosystem health. By integrating various spatial datasets, the web GIS app enhances data collection precision, streamlines monitoring processes, and provides real-time information to stakeholders for informed decision-making. This initiative fosters collaboration among local communities, government agencies, and international partners, while emphasizing the importance of government support and international partnerships. Ultimately, the web GIS application represents a significant advancement in Laos’s commitment to environmental sustainability, economic growth, and the creation of a greener future.

Session VII. Discussion Session on Synthesis

The meeting concluded with a comprehensive discussion on synthesizing themes related to LUCC. The session focused on three themes: LUCC, agriculture, and air pollution. The session focused on trends and projections as well as the resulting impacts in the coming years. It also highlighted research related to these topics to inform more sustainable land use policies. A panel of experts from different Southeast Asian countries addressed these topics. A summary of the key points shared by the panelists for each theme during the discussion is provided below.

LUCC Discussions

This discussion focused on the challenges of balancing economic development with environmental sustainability in Southeast Asian countries, e.g., mining in Myanmar, agriculture in Vietnam, and rising land prices in Thailand. More LUCC research is needed to inform decision-making and improve land-use planning during transitions from agriculture to industrialization while ensuring food security. The panelists also discussed urban sprawl and infrastructure development along main roads in several Southeast Asian countries, highlighting the social and environmental challenges arising from uncoordinated growth. It was noted that urban infrastructure lags behind population increases, resulting in traffic congestion, pollution, and social inequality. Cambodia, for example, has increased foreign investments, which presents similar dilemmas of economic growth accompanied by significant environmental degradation. Indonesia is another example of a Southeast Asian nation facing rapid urbanization and inadequate spatial planning, leading to flooding, groundwater depletion, and pollution. These issues further highlight the need for integrated satellite monitoring to inform land-use policies. Finally, recognizing the importance of public infrastructure in growth management, it was reported that the Thai government is already using technology to manage urban development alongside green spaces.

Panelists agreed that LUCC research is critical for guiding policymakers toward sustainable land-use practices – emphasizing the necessity for improved communication between researchers and policymakers. While the integration of technologies (e.g., GIS and remote sensing) is beginning to influence policy decisions, room for improvement remains. In summary, the discussions stressed the importance of better planning, technology integration, and policy-informed research to reconcile economic growth with sustainability. Participants also highlighted the need to engage policymakers, non-government organizations, and the private sector in using scientific evidence for sustainable development. Capacity building in Laos, Cambodia, and Myanmar, where GIS and remote sensing technologies are still developing, is crucial. Community involvement is essential for translating research findings into actionable policies to address real-world challenges and social equity.

Agriculture Discussions

These discussions explored the intricate relationships between agricultural practices, economic growth, and environmental sustainability in Southeast Asia. As an example, despite national policies to manage the land transition in Vietnam, rapid conversions from forest to agricultural land and further to residential and industrial continue. While it is recognized that strict land management plans may hinder future adaptability, further regulation is needed. These rapid shifts in land use have increased land for economic development – especially in industrial and residential sectors – and contribute to environmental degradation, e.g., pollution and soil erosion. In Thailand, land is distributed among agriculture (50%), forest (30%), and urban (20%) areas. Despite a long history of agricultural practices, Vietnam faces new challenges from climate change and extreme weather.

Thailand, meanwhile, is exploring carbon credits to incentivize sustainable farming practices – although this requires significant investment and time. The nation is well-equipped with a robust water supply system, and ongoing efforts to enhance crop yields on Vietnam’s Mekong Delta, salinity levels, and flooding intensity have increased as a result of the rise in incidents of extreme weather, prompting advancements in rice farming mechanization to be implemented that are modeled after practices that have been successfully used in the Philippines.

Despite these advances, issues (e.g., over-application of rice seeds) remain. The dominant land cover type in Malaysia is tropical rainforest, although agriculture – particularly oil palm plantations – also plays a significant role in land use. While stable, it shares environmental concerns with Indonesia. The country is integrating solar energy initiatives, placing solar panels on former agricultural lands and recreational areas, which raises coastal environmental concerns. In Taiwan, substantial land use changes have stemmed from solar panel installations to support green energy goals but have led to increased temperatures and altered wind patterns.

All panelists agreed that remote sensing technologies are vital to inform agricultural policy across the region. They emphasized the need to transition from academic research to actionable insights that directly inform policy. Panelists also discussed the challenge of securing funding for actionable research – underlining the importance of recognizing the transition required for research to inform operational use. Some countries (e.g., Thailand) have established operational crop monitoring systems, while others (e.g., Vietnam) primarily depend on research projects. Despite progress in Malaysia’s monitoring of oil palm plantations, a comprehensive operational monitoring system is still lacking in many areas. The participants concluded that increased efforts are needed to promote the wider adoption of remote sensing technologies for agricultural and environmental monitoring, with emphasis on developing operational systems that can be integrated into policy and decision-making processes.

Air Pollution Discussions

The discussion on air pollution focused on various sources in Southeast Asia, which included both local and transboundary factors. Panelists highlighted that motor vehicles, industrial activities, and power plants are major contributors to pollutants, such as PM2.5, NO2, ozone (O3), and carbon monoxide (CO). Forest fires in Indonesia – particularly from South Sumatra and Riau provinces – are significantly impacting neighboring countries, e.g., Malaysia. A study found that most PM2.5 pollution in Kuala Lumpur originates from Indonesia. During the COVID-19 pandemic, pollution levels dropped sharply due to reduced economic activity; however, data from 2018–2023 shows that PM2.5 levels have returned to pre-pandemic conditions.

The Indonesian government is actively working to reduce deforestation and emissions, aiming for a 29% reduction by 2030. Indonesia is also participating in carbon markets and receiving international payments for emission reductions. Indonesia’s emissions also stem from energy production, industrial activities, and land-use changes, including peat fires. The Indonesian government reports anthropogenic sources – particularly from the energy sector and industrial activities, forest and peat fires, waste, and agriculture – continue to escalate. While Indonesia is addressing these issues, growing population and energy demands continue to drive pollution levels higher.

Vietnam and Laos are facing similar challenges related to air pollution – particularly from agricultural residue burning. Both governments are working on expanding air quality monitoring, regulating waste burning, and developing policies to mitigate pollution. Vietnam has been developing provincial air quality management plans and expanding its monitoring network. Laos has seen increased awareness of pollution, accompanied by government measures aimed at restricting burning and improving waste management practices.

The panelists agreed that collaborative efforts for regional cooperation are essential to address air pollution. This will require collaboration in research and data sharing to inform policy decisions. There is a growing interest in leveraging satellite technology and modeling approaches to enhance air quality forecasting and management. To ensure that research translates into effective policy, communication of scientific findings to policymakers is essential – particularly by clearly communicating complex research concepts in accessible formats. All panelists agreed on the importance of improving governance, transparency, and scientific communication to better translate research into policy actions, highlighting collaborations with international organizations – including NASA – to address air quality issues. While significant challenges related to air pollution persist in Southeast Asia, noteworthy efforts are underway to improve awareness, research, and collaborative governance aimed at enhancing air quality and reducing emissions.

Conclusion

The LCLUC–SARI Synthesis meeting fostered collaboration among researchers and provided valuable updates on recent developments in LUCC research, exchange of ideas, integration of new data products, and discussions on emerging science directions. This structured dialogue (particularly the discussions in each session) helped the attendees identify priorities and needs within the LUCC community. All panelists and meeting participants commended the SARI leadership for their proactive role in facilitating collaborations and discussions that promote capacity-building activities across the region. SARI activities have significantly contributed to enhancing the collective ability of countries in South and Southeast Asia to address pressing environmental challenges. The meeting participants emphasized the importance of maintaining and expanding these collaborative efforts, which are crucial for fostering partnerships among governments, research institutions, and local communities. They urged SARI to continue organizing workshops, training sessions, and knowledge-sharing platforms that can equip stakeholders with the necessary skills and resources to tackle environmental issues such as air pollution, deforestation, climate change, and sustainable land management.

Krishna Vadrevu
NASA’s Marshall Space Flight Center
krishna.p.vadrevu@nasa.gov

Vu Tuan
Vietnam National Science Center, Vietnam
vatuan@vnsc.org.vn

Than Nguyen
Vietnam National University Engineering and Technology, Vietnam
thanhntn@vnu.edu.vn

Son Nghiem
Jet Propulsion Laboratory
son.v.nghiem@jpl.nasa.gov

Tsuneo Matsunaga
National Institute of Environmental Studies, Japan
matsunag@nies.go.jp

Garik Gutman
NASA Headquarters
ggutman@nasa.gov

Christopher Justice
University of Maryland College Park
cjustice@umd.edu

Share

Details

Last Updated
Feb 20, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Athena Economical Payload Integration Cost mission, or Athena EPIC, is a test launch for an innovative, scalable space vehicle design to support future missions. The small satellite platform is engineered to share resources among the payloads onboard by managing routine functions so the individual payloads don’t have to.
      This technology results in lower costs to taxpayers and a quicker path to launch.
      Fully integrated, the Athena EPIC satellite undergoes performance testing in a NovaWurks cleanroom to prepare the sensor for launch. The optical module payload element may be seen near the top of the instrument with the single small telescope.NovaWurks “Increasing the speed of discovery is foundational to NASA. Our ability to leverage access to innovative space technologies across federal agencies through industry partners is the future,” said Clayton Turner, Associate Administrator for Space Technology Mission Directorate at NASA headquarters in Washington. “Athena EPIC is a valuable demonstration of the government at its best — serving humankind to advance knowledge with existing hardware configured to operate with new technologies.”

      The NOAA (National Oceanic and Atmospheric Administration) and the U.S. Space Force are government partners for this demo mission. Athena EPIC’s industry partner, NovaWurks, provided the space vehicle, which utilizes a small satellite platform assembled with a Hyper-Integrated Satlet, or HISat.
      Engineers at NovaWurks in Long Beach prepare to mount the optical payload subassembly (center, silver) consisting of the payload optical module and single telescope mounted between gimbals on each of two HISats on either side of the module which will allow scanning across the Earth’s surface.NovaWurks The HISat instruments are similar in nature to a child’s toy interlocking building blocks. They’re engineered to be built into larger structures called SensorCraft. Those SensorCraft can share resources with multiple payloads and conform to different sizes and shapes to accommodate them. This easily configurable, building-block architecture allows a lot of flexibility with payload designs and concepts, ultimately giving payload providers easier, less expensive access to space and increased maneuverability between multiple orbits.
      Scientists at NASA’s Langley Research Center in Hampton, Virginia, designed and built the Athena sensor payload, which consists of an optical module, a calibration module, and a newly developed sensor electronics assembly. Athena EPIC’s sensor was built with spare parts from NASA’s CERES (Clouds and the Earth’s Radiant Energy System) mission. Several different generations of CERES satellite and space station instruments have tracked Earth’s radiation budget.
      “Instead of Athena carrying its own processor, we’re using the processors on the HISats to control things like our heaters and do some of the control functions that typically would be done by a processor on our payload,” said Kory Priestley, principal investigator for Athena EPIC from NASA Langley. “So, this is merging an instrument and a satellite platform into what we are calling a SensorCraft. It’s a more integrated approach. We don’t need as many capabilities built into our key instrument because it’s being brought to us by the satellite host. We obtain greater redundancy, and it simplifies our payload.”
      The fully assembled and tested Athena EPIC satellite which incorporates eight HISats mounted on a mock-up of a SpaceX provided launch pedestal which will hold Athena during launch.NovaWurks This is the first HISat mission led by NASA. Traditional satellites, like the ones that host the CERES instruments — are large, sometimes the size of a school bus, and carry multiple instruments. They tend to be custom units built with all of their own hardware and software to manage control, propulsion, cameras, carousels, processors, batteries, and more, and sometimes even require two of everything to guard against failures in the system. All of these factors, plus the need for a larger launch vehicle, significantly increase costs.
      This transformational approach to getting instruments into space can reduce the cost from billions to millions per mission.  “Now we are talking about something much smaller — SensorCraft the size of a mini refrigerator,” said Priestley. “If you do have failures on orbit, you can replace these much more economically. It’s a very different approach moving forward for Earth observation.”
      The Athena EPIC satellite is shown here mounted onto a vibration table during pre-launch environmental testing. The optical payload is located at the top in this picture with the two solar arrays, stowed for launch, flanking the lower half sides of the satellite.NovaWurks Athena EPIC is scheduled to launch July 22 as a rideshare on a SpaceX Falcon 9 rocket from Vandenberg Space Force Base, California. The primary NASA payload on the launch will be the TRACERS (Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites) mission. The TRACERS mission is led by the University of Iowa for NASA’s Heliophysics Division within the Science Mission Directorate. NASA’s Earth Science Division also provided funding for Athena EPIC.
      “Langley Research Center has long been a leader in developing remote sensing instruments for in-orbit satellites. As satellites become smaller, a less traditional, more efficient path to launch is needed in order to decrease complexity while simultaneously increasing the value of exploration, science, and technology measurements for the Nation,” added Turner.


      For more information on NASA’s Athena EPIC mission:
      https://science.nasa.gov/misshttps://science.nasa.gov/mission/athena/ion/athena/
      About the Author
      Charles G. Hatfield
      Science Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Jul 18, 2025 ContactCharles G. Hatfieldcharles.g.hatfield@nasa.govLocationNASA Langley Research Center Related Terms
      Langley Research Center Earth Earth Science Division Earth's Atmosphere General Science Mission Directorate Explore More
      6 min read What You Need to Know About NASA’s SpaceX Crew-11 Mission
      Four crew members are preparing to launch to the International Space Station as part of…
      Article 8 hours ago 2 min read Hubble Digs Up Galactic Time Capsule
      This NASA/ESA Hubble Space Telescope image features the field of stars that is NGC 1786.…
      Article 12 hours ago 4 min read NASA to Launch SNIFS, Sun’s Next Trailblazing Spectator
      July will see the launch of the groundbreaking Solar EruptioN Integral Field Spectrograph mission, or…
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 Min Read Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage
      The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Credits: NASA/Kathy Henkel In the vacuum of space, where temperatures can plunge to minus 455 degrees Fahrenheit, it might seem like keeping things cold would be easy. But the reality is more complex for preserving ultra-cold fluid propellants – or fuel – that can easily overheat from onboard systems, solar radiation, and spacecraft exhaust. The solution is a method called cryogenic fluid management, a suite of technologies that stores, transfers, and measures super cold fluids for the surface of the Moon, Mars, and future long-duration spaceflight missions.
      Super cold, or cryogenic, fluids like liquid hydrogen and liquid oxygen are the most common propellants for space exploration. Despite its chilling environment, space has a “hot” effect on these propellants because of their low boiling points – about minus 424 degrees Fahrenheit for liquid hydrogen and about minus 298 for liquid oxygen – putting them at risk of boiloff.
      In a first-of-its-kind demonstration, teams at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are testing an innovative approach to achieve zero boiloff storage of liquid hydrogen using two stages of active cooling which could prevent the loss of valuable propellant.
      “Technologies for reducing propellant loss must be implemented for successful long-duration missions to deep space like the Moon and Mars,” said Kathy Henkel, acting manager of NASA’s Cryogenic Fluid Management Portfolio Project, based at NASA Marshall. “Two-stage cooling prevents propellant loss and successfully allows for long-term storage of propellants whether in transit or on the surface of a planetary body.”
      The new technique, known as “tube on tank” cooling, integrates two cryocoolers, or cooling devices, to keep propellant cold and thwart multiple heat sources. Helium, chilled to about minus 424 degrees Fahrenheit, circulates through tubes attached to the outer wall of the propellant tank.
      NASA’s two-stage cooling testing setup sits in a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. NASA/Tom Perrin The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama.NASA/Kathy Henkel The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. NASA/Kathy Henkel The tank for NASA’s two-stage cooling tests is lowered into a vacuum chamber in Test Stand 300 at NASA’s Marshall Space Flight Center in Huntsville, Alabama. NASA/Kathy Henkel Teams installed the propellant tank in a test stand at NASA Marshall in early June, and the 90-day test campaign is scheduled to conclude in September. The tank is wrapped in a multi-layer insulation blanket that includes a thin aluminum heat shield fitted between layers. A second set of tubes, carrying helium at about minus 298 Fahrenheit, is integrated into the shield. This intermediate cooling layer intercepts and rejects incoming heat before it reaches the tank, easing the heat load on the tube-on-tank system.
      To prevent dangerous pressure buildup in the propellant tank in current spaceflight systems, boiloff vapors must be vented, resulting in the loss of valuable fuel. Eliminating such propellant losses is crucial to the success of NASA’s most ambitious missions, including future crewed journeys to Mars, which will require storing large amounts of cryogenic propellant in space for months or even years. So far, cryogenic fuels have only been used for missions lasting less than a week.  
      “To go to Mars and have a sustainable presence, you need to preserve cryogens for use as rocket or lander return propellant,” Henkel said. “Rockets currently control their propellant through margin, where larger tanks are designed to hold more propellant than what is needed for a mission. Propellant loss isn’t an issue with short trips because the loss is factored into this margin. But, human exploration missions to Mars or longer stays at the Moon will require a different approach because of the very large tanks that would be needed.”
      The Cryogenic Fluid Management Portfolio Project is a cross-agency team based at NASA Marshall and the agency’s Glenn Research Center in Cleveland. The cryogenic portfolio’s work is under NASA’s Technology Demonstration Missions Program, part of NASA’s Space Technology Mission Directorate, and is comprised of more than 20 individual technology development activities.
      Learn more about cryogenic fluid management:
      https://go.nasa.gov/cfm
      Share
      Details
      Last Updated Jul 18, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Cryogenic Fluid Management (CFM) Marshall Space Flight Center Space Technology Mission Directorate Technology Demonstration Technology Demonstration Missions Program Explore More
      3 min read NASA-Derived Textiles are Touring France by Bike
      Article 2 hours ago 3 min read Registration Opens for 2025 NASA International Space Apps Challenge
      Article 1 day ago 2 min read Ejection Mechanism Design for the SPEED Test Architecture Challenge
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Israel-Premier Tech team racing in the 2025 Tour de France uses Ekoï clothing and equipment, including products made with Outlast – a material developed with NASA’s assistance.Credit: Ekoï During the Tour de France, athletes have to maintain a constant speed while bike riding for dozens of miles through cold rains and summer heat. These cyclists need gear that adapts to the different environments they encounter. One company is using a material with NASA origins to ensure these athletes stay comfortable while taking their grand tours.

      Phase-change materials use basic properties of matter to maintain a steady temperature. When a substance melts from a solid to a liquid, the material absorbs heat, and when it becomes solid again, it releases that heat. In the 1980s, Triangle Research Corporation received a NASA Small Business Innovation Research award to explore how phase-change materials could be incorporated into textiles to control temperatures in spacesuit gloves. By placing phase-change materials in small capsules woven throughout a textile, these temperature-regulating properties can be tuned to the comfort of the human body. While these textiles weren’t incorporated into any gloves flown on NASA missions, they formed the basis for a new product, sold under the name Outlast.

      Outlast has since become one of the most widely distributed temperature-regulating fabrics, found in products such as bedding, loungewear, and office chairs. It has seen especially extensive use in activewear, ranging from jogging clothes to professional sports gear. 

      Founded in 2001 and based in Fréjus, France, the company Ekoï makes clothing and accessories for cyclists, particularly those who bike competitively. The company first encountered Outlast at the Performance Days fabric trade fair in Munich, Germany, and was impressed with its capabilities as well as its NASA heritage.

      “When you say NASA, it’s always impressive.” said Celine Milan, director of textiles at Ekoï. “At the beginning we were even saying in here in our offices, ‘Wow, this technology was developed by NASA.’ It’s on another level.”

      Ekoi’s Outlast line officially launched in July 2022, during that year’s Tour de France. Over the course of that race, the company found it improved cyclists’ performance in the event’s mountain stages, where elevation changes mean wide swings in temperature. It also improved athletes’ aerodynamics, as their jerseys could stay closed in warmer environments, rather than opening them to let in wind.

      Today, Ekoï sells several products that incorporate Outlast materials, including jerseys, gloves, and socks. These products are internationally known for their NASA heritage. Whether engineering for astronaut’s comfort in space or competitive athletes, NASA aims for excellence. 

      Learn more about NASA’s Spinoff Technologies: https://spinoff.nasa.gov/
      Read More Share
      Details
      Last Updated Jul 18, 2025 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      3 min read Comet-Catching NASA Technology Enables Exotic Works of Art 
      Article 1 month ago 2 min read NASA Tech Gives Treadmill Users a ‘Boost’  
      Creators of the original antigravity treadmill continue to advance technology with new company.
      Article 2 months ago 3 min read Winners Announced in NASA’s 2025 Gateways to Blue Skies Competition
      Article 2 months ago Keep Exploring Discover Related Topics
      Technology Transfer & Spinoffs
      Humans in Space
      SBIR/STTR Phase I
      Solar System
      View the full article
    • By NASA
      How Can I Get Involved with NASA Science? We Asked a NASA Expert
    • By NASA
      The four crew members of NASA’s SpaceX Crew-11 mission to the International Space Station train inside a SpaceX Dragon spacecraft in Hawthorne, California. From left to right: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA astronaut Kimiya YuiSpaceX Four crew members are preparing to launch to the International Space Station as part of NASA’s SpaceX Crew-11 mission to perform research, technology demonstrations, and maintenance activities aboard the orbiting laboratory.
      During the mission, Crew-11 also will contribute to NASA’s Artemis campaign by simulating Moon landing scenarios that astronauts may encounter near the lunar South Pole, showing how the space station helps prepare crews for deep space human exploration. The simulations will be performed before, during, and after their mission using handheld controllers and multiple screens to identify how changes in gravity affect spatial awareness and astronauts’ ability to pilot spacecraft, like a lunar lander.
      NASA astronauts Zena Cardman and Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, and Roscosmos cosmonaut Oleg Platonov will lift off no earlier than 12:09 p.m. EDT on Thursday, July 31, from Launch Complex 39A at the agency’s Kennedy Space Center in Florida on a long-duration mission. The cadre will fly aboard a SpaceX Dragon spacecraft, named Endeavour, which previously flew NASA’s SpaceX Demo-2, Crew-2, Crew-6, and Crew-8 missions, as well as private astronaut mission Axiom Mission 1.
      The flight is the 11th crew rotation mission with SpaceX to the space station as part of NASA’s Commercial Crew Program. Overall, the Crew-11 mission is the 16th crewed Dragon flight to the space station, including Demo-2 in 2020 and 11 operational crew rotations for NASA, as well as four private astronaut missions.
      As support teams progress through Dragon preflight milestones for Crew-11, they also are preparing a SpaceX Falcon 9 rocket booster for its third flight. Once all rocket and spacecraft system checkouts are complete and all components are certified for flight, teams will mate Dragon to Falcon 9 in SpaceX’s hangar at the launch site. The integrated spacecraft and rocket will then be rolled to the pad and raised vertically for the crew’s dry dress rehearsal and an integrated static fire test before launch.
      Meet Crew-11
      The official crew portrait of NASA’s SpaceX Crew-11 members. Front row, from left, are Pilot Mike Fincke and Commander Zena Cardman, both NASA astronauts. In the back from left, are Mission Specialists Oleg Platonov of Roscosmos and Kimiya Yui of JAXA (Japan Aerospace Exploration Agency)NASA/Robert Markowitz Selected as a NASA astronaut in 2017, Cardman will conduct her first spaceflight. The Williamsburg, Virginia, native holds a bachelor’s degree in biology and a master’s degree in marine sciences from the University of North Carolina at Chapel Hill. At the time of selection, she was pursuing a doctorate in geosciences. Cardman’s geobiology and geochemical cycling research focused on subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning. Follow @zenanaut on X and @zenanaut on Instagram.
      This mission will be Fincke’s fourth trip to the space station, having logged 382 days in space and nine spacewalks during Expedition 9 in 2004, Expedition 18 in 2008, and STS-134 in 2011, the final flight of space shuttle Endeavour. Throughout the past decade, Fincke has applied his expertise to NASA’s Commercial Crew Program, advancing the development and testing of Dragon and Boeing’s Starliner spacecraft toward operational certification. The Emsworth, Pennsylvania, native is a graduate of the United States Air Force Test Pilot School and holds bachelors’ degrees from the Massachusetts Institute of Technology, Cambridge, in both aeronautics and astronautics, as well as Earth, atmospheric, and planetary sciences. He also has a master’s degree in aeronautics and astronautics from Stanford University in California. Fincke is a retired U.S. Air Force colonel with more than 2,000 flight hours in over 30 different aircraft. Follow @AstroIronMike on X and Instagram.
      With 142 days in space, this mission will be Yui’s second trip to the space station. After his selection as a JAXA astronaut in 2009, Yui flew as a flight engineer for Expedition 44/45 and became the first Japanese astronaut to capture JAXA’s H-II Transfer Vehicle using the station’s robotic arm. In addition to constructing a new experimental environment aboard Kibo, he conducted a total of 21 experiments for JAXA. In November 2016, Yui was assigned as chief of the JAXA Astronaut Group. He graduated from the School of Science and Engineering at the National Defense Academy of Japan in 1992. He later joined the Air Self-Defense Force at the Japan Defense Agency (currently the Ministry of Defense). In 2008, Yui joined the Air Staff Office at the Ministry of Defense as a lieutenant colonel. Follow @astro_kimiya on X.
      The mission will be Platonov’s first spaceflight. Before his selection as a cosmonaut in 2018, Platonov earned a degree in engineering from Krasnodar Air Force Academy in aircraft operations and air traffic management. He also earned a bachelor’s degree in state and municipal management in 2016 from the Far Eastern Federal University in Vladivostok, Russia. Assigned as a test cosmonaut in 2021, he has experience in piloting aircraft, zero gravity training, scuba diving, and wilderness survival.
      Mission Overview
      From left to right: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA astronaut Kimiya Yui pictured after participating in a training simulation inside a mockup at NASA’s Johnson Space Center in HoustonNASA/Robert Markowitz Following liftoff, Falcon 9 will accelerate Dragon to approximately 17,500 mph. Once in orbit, the crew, NASA, and SpaceX mission control will monitor a series of maneuvers that will guide Dragon to the forward-facing port of the station’s Harmony module. The spacecraft is designed to dock autonomously, but the crew can pilot it manually, if necessary.
      After docking, Crew-11 will be welcomed aboard the station by the seven-member Expedition 73 crew, before conducting a short handover period on research and maintenance activities with the departing Crew-10 crew members. Then, NASA astronauts Anne McClain, Nichole Ayers, JAXA astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov will undock from the space station and return to Earth. Ahead of Crew-10’s return, mission teams will review weather conditions at the splashdown sites off the coast of California before departure from the station.
      Cardman, Fincke, and Yui will conduct scientific research to prepare for human exploration beyond low Earth orbit and benefit humanity on Earth. Participating crew members will simulate lunar landings, test strategies to safeguard vision, and advance other human spaceflight studies led by NASA’s Human Research Program. The crew also will study plant cell division and microgravity’s effects on bacteria-killing viruses, as well as perform experiments to produce a higher volume of human stem cells and generate on-demand nutrients.
      While aboard the orbiting laboratory, Crew-11 will welcome a Soyuz spacecraft in November with three new crew members, including NASA astronaut Chris Williams.  They also will bid farewell to the Soyuz carrying NASA astronaut Jonny Kim. The crew also is expected to see the arrival of the Dragon, Roscosmos Progress spacecraft, and Northrop Grumman’s Cygnus spacecraft to resupply the station.
      NASA’s SpaceX Crew-11 mission will be aboard the International Space Station on Nov. 2, when the orbiting laboratory surpasses 25 years of a continuous human presence. Since the first crew expedition arrived, the space station has enabled more than 4,000 groundbreaking experiments in the unique microgravity environment, while becoming a springboard for building a low Earth orbit economy and preparing for NASA’s future exploration of the Moon and Mars.
      Learn more about the space station, its research, and crew, at:
      https://www.nasa.gov/station

      View the full article
  • Check out these Videos

×
×
  • Create New...