Jump to content

NASA Associate Administrator Jim Free to Retire After 30 Years Service


Recommended Posts

  • Publishers
Posted
nhq202411220001large.jpg?w=1536
Official portrait of NASA Associate Administrator Jim Free, taken on Nov. 22, 2024, at the agency’s headquarters in Washington.
Credit: NASA/Bill Ingalls

NASA Associate Administrator Jim Free announced Wednesday his retirement, effective Saturday, Feb. 22. As associate administrator, Free has been the senior advisor to NASA Acting Administrator Janet Petro and leads NASA’s 10 center directors, as well as the mission directorate associate administrators at NASA Headquarters in Washington. He is the agency’s chief operating officer for more than 18,000 employees and oversaw an annual budget of more than $25 billion.  

During his tenure as associate administrator since January 2024, NASA added nearly two dozen new signatories of the Artemis Accords, enabled the first Moon landing through the agency’s CLPS (Commercial Lunar Payload Services) initiative to deliver NASA science to the lunar surface, launched the Europa Clipper mission to study Jupiter’s icy ocean moon, and found molecules containing the ingredients for life in samples from asteroid Bennu delivered to Earth by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification and Security–Regolith Explorer) spacecraft.

“Throughout his career, Jim has been the ultimate servant leader – always putting the mission and the people of NASA first,” said Petro. “A remarkable engineer and a decisive leader, he combines deep technical expertise with an unwavering commitment to this agency’s mission. Jim’s legacy is one of selfless service, steadfast leadership, and a belief in the power of people.”

Among the notable contributions to the nation during his NASA career, Free also championed a new path forward to return samples from Mars ahead of human missions to the Red Planet, supported the crews living and working aboard the International Space Station as they conduct hundreds of experiments and technology demonstrations, and engaged industry in new ways to secure a public/private partnership for NASA’s VIPER (Volatiles Investigating Polar Exploration Rover) mission on the Moon. 

“It has been an honor to serve NASA and walk alongside the workforce that tackles the most difficult engineering challenges, pursues new scientific knowledge in our universe and beyond, develops technologies for future exploration endeavors, all while prioritizing safety every day for people on the ground, in the air, and in space,” Free said. “I am grateful for the opportunity to be part of the NASA family and contribute to the agency’s mission for the benefit of humanity.”

During his more than three decades of service, Free has held several leadership roles at the agency. Before being named NASA associate administrator, Free served as associate administrator of the Exploration Systems Development Mission Directorate, where he oversaw the successful Artemis I mission and the development of NASA’s Moon to Mars architecture, defining and managing the systems development for the agency’s Artemis missions and planning for NASA’s integrated deep space exploration approach. 

Free began his NASA career in 1990 as an engineer, working on Tracking and Data Relay Satellites at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. He later transferred to the agency’s Glenn Research Center in Cleveland and served in a variety of roles supporting the International Space Station and the development of the Orion spacecraft before transferring to NASA’s Johnson Space Center in Houston in 2008. Free returned to NASA Glenn in 2009 and was promoted to chief of the Space Flight Systems Directorate, where he oversaw the center’s space work. Free was named deputy center director in November 2010 and then served as center director from January 2013 until March 2016, when he was appointed to the NASA Headquarters position of deputy associate administrator for Technical [sic] in the Human Exploration and Operations Mission Directorate.

A native of Northeast Ohio, Free earned his bachelor’s degree in aeronautics from Miami University in Oxford, Ohio, and his master’s degree in space systems engineering from Delft University of Technology in the Netherlands. 

Free is the recipient of the Presidential Rank Award, NASA Distinguished Service Medal, NASA Outstanding Leadership Medal, NASA Exceptional Service Medal, NASA Significant Achievement Medal, and numerous other awards.

For more information about NASA, visit:

https://www.nasa.gov

-end-

Kathryn Hambleton / Cheryl Warner
Headquarters, Washington
202-358-1600
kathryn.hambleton@nasa.gov / cheryl.m.warner@nasa.gov

Share

Details

Last Updated
Feb 19, 2025
Editor
Jessica Taveau

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The high-rise bridge that serves as the primary access point for employees and visitors to NASA’s Kennedy Space Center in Florida now is fully operational. In the late hours of March 18, 2025, the Florida Department of Transportation (FDOT) opened the westbound portion of the NASA Causeway Bridge, which spans the Indian River Lagoon and connects NASA Kennedy and Cape Canaveral Space Force Station to the mainland.
      This new bridge span (right side of photo) sits alongside its twin on the eastbound side, which has accommodated traffic in both directions since FDOT opened it on June 9, 2023. The new structure replaces the old two-lane drawbridge which operated at that location for nearly 60 years.
      “The old drawbridge served us well, witnessing decades of spaceflights since the Apollo era and supporting Kennedy’s transition to a multi-user spaceport,” said Kennedy’s Acting Director Kelvin Manning. “The new bridge will see NASA send American astronauts back to the Moon and on to Mars, and it will support the continued rapid growth of America’s commercial space industry here at Earth’s premier spaceport.”
      At 4,025 feet long, the new NASA Causeway Bridge is about 35% longer than its predecessor, featuring a 65-foot waterway clearance and a channel wide enough to handle larger vessels carrying cargo necessary for Kennedy to continue launching humanity’s future.
      The bridge sits on over 1,000 concrete pilings which total more than 22 miles in length. Nearly 270 concrete I-beams, each weighing hundreds of thousands of pounds, support the bridge, along with over 40,000 cubic yards of concrete and over 8.7 million pounds of steel. All 110 spans of the old drawbridge were demolished during the construction, with much of the material recycled for future projects.
      A $90 million federal infrastructure grant secured in July 2019 by Space Florida via the U.S. Department of Transportation funded nearly 50% of the drawbridge replacement as well the widening of nearby Space Commerce Way. NASA and the state of Florida provided the remaining funding for the upgrades.
      Photo credit: NASA/Glenn Benson
      View the full article
    • By Space Force
      U.S. Space Force Col. Nick Hague returned to Earth following a six-month mission aboard the International Space Station, March 18, 2025.

      View the full article
    • By NASA
      This compressed, resolution-limited gif shows the view of lunar sunset from one of the six Stereo Cameras for Lunar-Plume Surface Studies (SCALPSS) 1.1 cameras on Firefly’s Blue Ghost lander, which operated on the Moon’s surface for a little more than 14 days and stopped, as anticipated, a few hours into lunar night. The bright, swirly light moving across the surface on the top right of the image is sunlight reflecting off the lander. Images taken by SCALPSS 1.1 during Blue Ghost’s descent and landing, as well as images from the surface during the long lunar day, will help researchers better understand the effects of a lander’s engine plumes on the lunar soil, or regolith. The instrument collected almost 9000 images and returned 10 GB of data. This data is important as trips to the Moon increase and the number of payloads touching down in proximity to one another grows. The SCALPSS 1.1 project is funded by the Space Technology Mission Directorate’s Game Changing Development program. SCALPSS was developed at NASA’s Langley Research Center in Hampton, Virginia, with support from Marshall Space Flight Center in Huntsville, Alabama.NASA/Olivia TyrrellView the full article
    • By NASA
      NASA astronauts Nick Hague, Suni Williams, Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov land in a SpaceX Dragon spacecraft in the water off the coast of Tallahassee, Florida on March 18, 2025. Hague, Gorbunov, Williams, and Wilmore returned from a long-duration science expedition aboard the International Space Station. Credit: NASA/Keegan Barber NASA’s SpaceX Crew-9 completed the agency’s ninth commercial crew rotation mission to the International Space Station on Tuesday, splashing down safely in a SpaceX Dragon spacecraft off the coast of Tallahassee, Florida, in the Gulf of America.
      NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov, returned to Earth at 5:57 p.m. EDT. Teams aboard SpaceX recovery vessels retrieved the spacecraft and its crew. After returning to shore, the crew will fly to NASA’s Johnson Space Center in Houston and reunite with their families.
      “We are thrilled to have Suni, Butch, Nick, and Aleksandr home after their months-long mission conducting vital science, technology demonstrations, and maintenance aboard the International Space Station,” said NASA acting Administrator Janet Petro. “Per President Trump’s direction, NASA and SpaceX worked diligently to pull the schedule a month earlier. This international crew and our teams on the ground embraced the Trump Administration’s challenge of an updated, and somewhat unique, mission plan, to bring our crew home. Through preparation, ingenuity, and dedication, we achieve great things together for the benefit of humanity, pushing the boundaries of what is possible from low Earth orbit to the Moon and Mars.”
      Hague and Gorbunov lifted off at 1:17 p.m. Sept. 28, 2024, on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. The next day, they docked to the forward-facing port of the station’s Harmony module. Williams and Wilmore launched aboard Boeing’s Starliner spacecraft and United Launch Alliance Atlas V rocket on June 5, 2024, from Space Launch Complex 41 as part of the agency’s Boeing Crew Flight Test. The duo arrived at the space station on June 6. In August, NASA announced the uncrewed return of Starliner to Earth and integrated Wilmore and Williams as part of the space station’s Expedition 71/72 for a return on Crew-9. The crew of four undocked at 1:05 a.m. Tuesday to begin the trip home.
      Williams and Wilmore traveled 121,347,491 miles during their mission, spent 286 days in space, and completed 4,576 orbits around Earth. Hague and Gorbunov traveled 72,553,920 miles during their mission, spent 171 days in space, and completed 2,736 orbits around Earth. The Crew-9 mission was the first spaceflight for Gorbunov. Hague has logged 374 days in space over his two missions, Williams has logged 608 days in space over her three flights, and Wilmore has logged 464 days in space over his three flights.
      Throughout its mission, Crew-9 contributed to a host of science and maintenance activities and technology demonstrations. Williams conducted two spacewalks, joined by Wilmore for one and Hague for another, removing a radio frequency group antenna assembly from the station’s truss, collecting samples from the station’s external surface for analysis, installing patches to cover damaged areas of light filters on an X-ray telescope, and more. Williams now holds the record for total spacewalking time by a female astronaut, with 62 hours and 6 minutes outside of station, and is fourth on the all-time spacewalk duration list.
      The American crew members conducted more than 150 unique scientific experiments and technology demonstrations between them, with over 900 hours of research. This research included investigations on plant growth and quality, as well as the potential of stem cell technology to address blood diseases, autoimmune disorders, and cancers. They also tested lighting systems to help astronauts maintain circadian rhythms, loaded the first wooden satellite for deployment, and took samples from the space station’s exterior to study whether microorganisms can survive in space.
      The Crew-9 mission was the fourth flight of the Dragon spacecraft named Freedom. It also previously supported NASA’s SpaceX Crew-4, Axiom Mission 2, and Axiom Mission 3. The spacecraft will return to Florida for inspection and processing at SpaceX’s refurbishing facility at Cape Canaveral Space Force Station, where teams will inspect the Dragon, analyze data on its performance, and begin processing for its next flight.
      The Crew-9 flight is part of NASA’s Commercial Crew Program, and its return to Earth follows on the heels of NASA’s SpaceX Crew-10 launch, which docked to the station on March 16, beginning another long-duration science expedition.
      The goal of NASA’s Commercial Crew Program is safe, reliable, and cost-effective transportation to and from the space station and low Earth orbit. The program provides additional research time and has increased opportunities for discovery aboard humanity’s microgravity testbed for exploration, including helping NASA prepare for human exploration of the Moon and Mars.
      Learn more about NASA’s Commercial Crew Program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Amber Jacobson / Joshua Finch
      Headquarters, Washington
      202-358-1100
      amber.c.jacobson@nasa.gov / joshua.a.finch@nasa.gov
      Kenna Pell / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      kenna.m.pell@nasa.gov / sandra.p.jones@nasa.gov
      Steve Siceloff / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Mar 18, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Humans in Space Expedition 72 International Space Station (ISS) ISS Research Space Operations Mission Directorate View the full article
    • By NASA
      After delivering ten NASA science and technology payloads to the near side of the Moon through NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission 1 lander captured this image of a sunset from the lunar surface. Credit: Firefly Aerospace After landing on the Moon with NASA science and technology demonstrations March 2, Firefly Aerospace’s Blue Ghost Mission 1 concluded its mission March 16. Analysis of data returned to Earth from the NASA instruments continues, benefitting future lunar missions.
      As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly’s Blue Ghost lunar lander delivered 10 NASA science and technology instruments to the Mare Crisium basin on the near side of the Moon. During the mission, Blue Ghost captured several images and videos, including imaging a total solar eclipse and a sunset from the surface of the Moon. The mission lasted for about 14 days, or the equivalent of one lunar day, and multiple hours into the lunar night before coming to an end.
      “Firefly’s Blue Ghost Mission 1 marks the longest surface duration commercial mission on the Moon to date, collecting extraordinary science data that will benefit humanity for decades to come,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “With NASA’s CLPS initiative, American companies are now at the forefront of an emerging lunar economy that lights the way for the agency’s exploration goals on the Moon and beyond.”
      All 10 NASA payloads successfully activated, collected data, and performed operations on the Moon. Throughout the mission, Blue Ghost transmitted 119 gigabytes of data back to Earth, including 51 gigabytes of science and technology data. In addition, all payloads were afforded additional opportunities to conduct science and gather more data for analysis, including during the eclipse and lunar sunset.
      “Operating on the Moon is complex; carrying 10 payloads, more than has ever flown on a CLPS delivery before, makes the mission that much more impressive,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters. “Teams are eagerly analyzing their data, and we are extremely excited for the expected scientific findings that will be gained from this mission.”
      Among other achievements, many of the NASA instruments performed first-of-their-kind science and technology demonstrations, including:
      The Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity  is now the deepest robotic planetary subsurface thermal probe, drilling  up to 3 feet and providing a first-of-its kind demonstration of robotic thermal measurements at varying depths. The Lunar GNSS Receiver Experiment acquired and tracked Global Navigation Satellite Systems (GNSS) signals, from satellite networks such as GPS and Galileo, for the first time enroute to and on the Moon’s surface. The LuGRE payload’s record-breaking success indicates that GNSS signals could complement other navigation methods and be used to support future Artemis missions. It also acts as a stepping stone to future navigation systems on Mars.  The Radiation Tolerant Computer successfully operated in transit through Earth’s Van Allen belts, as well as on the lunar surface into the lunar night, verifying solutions to mitigate radiation effects on computers that could make future missions safer for equipment and more cost effective. The Electrodynamic Dust Shield successfully lifted and removed lunar soil, or regolith, from surfaces using electrodynamic forces, demonstrating a promising solution for dust mitigation on future lunar and interplanetary surface operations. The Lunar Magnetotelluric Sounder successfully deployed five sensors to study the Moon’s interior by measuring electric and magnetic fields. The instrument allows scientists to characterize the interior of the Moon to depths up to 700 miles, or more than half the distance to the Moon’s center. The Lunar Environment heliospheric X-ray Imager captured a series of X-ray images to study the interaction of the solar wind and Earth’s magnetic field, providing insights into how space weather and other cosmic forces surrounding Earth affect the planet.  The Next Generation Lunar Retroreflector successfully reflected and returned laser light from two Lunar Laser Ranging Observatories, returning measurements allowing scientists to precisely measure the Moon’s shape and distance from Earth, expanding our understanding of the Moon’s inner structure.  The Stereo Cameras for Lunar Plume-Surface Studies instrument captured about 9,000 images during the spacecraft’s lunar descent and touchdown on the Moon, providing insights into the effects engine plumes have on the surface. The payload also operated during the lunar sunset and into the lunar night. The Lunar PlanetVac was deployed on the lander’s surface access arm and successfully collected, transferred, and sorted lunar soil using pressurized nitrogen gas, demonstrating a low-cost, low-mass solution for future robotic sample collection. The Regolith Adherence Characterization instrument examined how lunar regolith sticks to a range of materials exposed to the Moon’s environment, which can help test, improve, and protect spacecraft, spacesuits, and habitats from abrasive lunar dust or regolith. The data captured will benefit humanity in many ways, providing insights into how space weather and other cosmic forces may impact Earth. Establishing an improved awareness of the lunar environment ahead of future crewed missions will help plan for long-duration surface operations under Artemis.
      To date, five vendors have been awarded 11 lunar deliveries under CLPS and are sending more than 50 instruments to various locations on the Moon, including the lunar South Pole and far side.
      Learn more about NASA’s CLPS initiative at:
      https://www.nasa.gov/clps
      -end-
      Alise Fisher 
      Headquarters, Washington
      202-617-4977
      alise.m.fisher@nasa.gov
      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-501-8425
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Mar 18, 2025 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Blue Ghost (lander) Johnson Space Center Kennedy Space Center NASA Headquarters View the full article
  • Check out these Videos

×
×
  • Create New...