Jump to content

NASA Associate Administrator Jim Free to Retire After 30 Years Service


Recommended Posts

  • Publishers
Posted
nhq202411220001large.jpg?w=1536
Official portrait of NASA Associate Administrator Jim Free, taken on Nov. 22, 2024, at the agency’s headquarters in Washington.
Credit: NASA/Bill Ingalls

NASA Associate Administrator Jim Free announced Wednesday his retirement, effective Saturday, Feb. 22. As associate administrator, Free has been the senior advisor to NASA Acting Administrator Janet Petro and leads NASA’s 10 center directors, as well as the mission directorate associate administrators at NASA Headquarters in Washington. He is the agency’s chief operating officer for more than 18,000 employees and oversaw an annual budget of more than $25 billion.  

During his tenure as associate administrator since January 2024, NASA added nearly two dozen new signatories of the Artemis Accords, enabled the first Moon landing through the agency’s CLPS (Commercial Lunar Payload Services) initiative to deliver NASA science to the lunar surface, launched the Europa Clipper mission to study Jupiter’s icy ocean moon, and found molecules containing the ingredients for life in samples from asteroid Bennu delivered to Earth by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification and Security–Regolith Explorer) spacecraft.

“Throughout his career, Jim has been the ultimate servant leader – always putting the mission and the people of NASA first,” said Petro. “A remarkable engineer and a decisive leader, he combines deep technical expertise with an unwavering commitment to this agency’s mission. Jim’s legacy is one of selfless service, steadfast leadership, and a belief in the power of people.”

Among the notable contributions to the nation during his NASA career, Free also championed a new path forward to return samples from Mars ahead of human missions to the Red Planet, supported the crews living and working aboard the International Space Station as they conduct hundreds of experiments and technology demonstrations, and engaged industry in new ways to secure a public/private partnership for NASA’s VIPER (Volatiles Investigating Polar Exploration Rover) mission on the Moon. 

“It has been an honor to serve NASA and walk alongside the workforce that tackles the most difficult engineering challenges, pursues new scientific knowledge in our universe and beyond, develops technologies for future exploration endeavors, all while prioritizing safety every day for people on the ground, in the air, and in space,” Free said. “I am grateful for the opportunity to be part of the NASA family and contribute to the agency’s mission for the benefit of humanity.”

During his more than three decades of service, Free has held several leadership roles at the agency. Before being named NASA associate administrator, Free served as associate administrator of the Exploration Systems Development Mission Directorate, where he oversaw the successful Artemis I mission and the development of NASA’s Moon to Mars architecture, defining and managing the systems development for the agency’s Artemis missions and planning for NASA’s integrated deep space exploration approach. 

Free began his NASA career in 1990 as an engineer, working on Tracking and Data Relay Satellites at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. He later transferred to the agency’s Glenn Research Center in Cleveland and served in a variety of roles supporting the International Space Station and the development of the Orion spacecraft before transferring to NASA’s Johnson Space Center in Houston in 2008. Free returned to NASA Glenn in 2009 and was promoted to chief of the Space Flight Systems Directorate, where he oversaw the center’s space work. Free was named deputy center director in November 2010 and then served as center director from January 2013 until March 2016, when he was appointed to the NASA Headquarters position of deputy associate administrator for Technical [sic] in the Human Exploration and Operations Mission Directorate.

A native of Northeast Ohio, Free earned his bachelor’s degree in aeronautics from Miami University in Oxford, Ohio, and his master’s degree in space systems engineering from Delft University of Technology in the Netherlands. 

Free is the recipient of the Presidential Rank Award, NASA Distinguished Service Medal, NASA Outstanding Leadership Medal, NASA Exceptional Service Medal, NASA Significant Achievement Medal, and numerous other awards.

For more information about NASA, visit:

https://www.nasa.gov

-end-

Kathryn Hambleton / Cheryl Warner
Headquarters, Washington
202-358-1600
kathryn.hambleton@nasa.gov / cheryl.m.warner@nasa.gov

Share

Details

Last Updated
Feb 19, 2025
Editor
Jessica Taveau

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Researchers in the Verification and Validation Lab at NASA’s Ames Research Center in California’s Silicon Valley monitor a simulated drone’s flight path during a test of the FUSE demonstration.NASA/Brandon Torres Navarrete Through an ongoing collaboration, NASA and the Department of War are working to advance the future of modern drones to support long distance cargo transportation that could increase efficiency, reduce human workload, and enhance safety.  
      Researchers from NASA’s Ames Research Center in California’s Silicon Valley recently participated in a live flight demonstration showcasing how drones can successfully fly without their operators being able to see them, a concept known as beyond visual line of sight (BVLOS).  
      Cargo drones, a type of Unmanned Aerial Systems (UAS), carried various payloads more than 75 miles across North Dakota, between Grand Forks Air Force Base and Cavalier Space Force Station. This demonstration was conducted as part of the War Department’s UAS Logistics, Traffic, Research, and Autonomy (ULTRA) effort. 
      NASA’s UAS Service Supplier (USS) technology helped to demonstrate that cargo drones could operate safely even in complex, shared airspace. During the tests, flight data including location, altitude, and other critical data were transmitted live to the NASA system, ensuring full situational awareness throughout the demonstration. 
      Terrence Lewis and Sheryl Jurcak, members of the FUSE project team at NASA Ames, discuss the monitoring efforts of the FUSE demonstration at the Airspace Operations Lab. NASA/Brandon Torres Navarrete The collaboration between NASA and the Department of War is known as the Federal USS Synthesis Effort (FUSE). The demonstration allowed FUSE researchers to test real-time tracking, situational awareness, and other factors important to safely integrating of drone traffic management into U.S. national airspace. The FUSE work marks an important step towards routine, scalable autonomous cargo drone operations and broader use for future military logistics. 
      “NASA and the Department of War have a long and storied partnership, collaborating with one another to contribute to continued advancement of shared American ideals,” said Todd Ericson, senior advisor to the NASA administrator. “FUSE builds upon our interagency cooperation to contribute enhanced capabilities for drones flying beyond the visual line of sight. This mission is the next big step toward true autonomous flight and will yield valuable insights that we can leverage as both the commercial drone, cargo and urban air taxi industries continue to expand and innovate. As always, safety is of paramount importance at NASA, and we are working with our partners at the FAA and Department of Transportation to ensure we regulate this appropriately.” 
      Autonomous and semi-autonomous drones could potentially support a broad range of tasks for commercial, military, and private users. They could transport critical medical supplies to remote locations, monitor wildfires from above, allow customers to receive deliveries directly in their backyards. NASA is researching technology to further develop the infrastructure needed for these operations to take place safely and effectively, without disrupting the existing U.S. airspace. 
      “This system is crucial for enabling safe, routine BVLOS operations,” said Terrence Lewis, FUSE project manager at NASA Ames. “It ensures all stakeholders can see and respond to drone activity, which provides the operator with greater situational awareness.” 
      NASA Ames is collaborating on the FUSE project with the War Department’s Office of the Undersecretary of War for Acquisition and Sustainment. The NASA FUSE effort is also collaborating with ULTRA, a multi-entity partnership including the Office of the Secretary of War, the County of Grand Forks, the Northern Plains UAS Test Site, the Grand Sky Development, the Air Force Research Laboratory, and several other commercial partners, aiming to bolster capabilities within the National Airspace System. 
      Share
      Details
      Last Updated Sep 12, 2025 Related Terms
      Ames Research Center Aeronautics Aeronautics Research General Explore More
      5 min read NASA’s X-59 Moves Toward First Flight at Speed of Safety
      Article 5 minutes ago 1 min read Drag Prediction Workshop Series
      Article 8 hours ago 2 min read NASA Ames Science Directorate: Stars of the Month – September 2025
      Article 23 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Honolulu is pictured here beside a calm sea in 2017. A JPL technology recently detected and confirmed a tsunami up to 45 minutes prior to detection by tide gauges in Hawaii, and it estimated the speed of the wave to be over 580 miles per hour (260 meters per second) near the coast.NASA/JPL-Caltech A massive earthquake and subsequent tsunami off Russia in late July tested an experimental detection system that had deployed a critical component just the day before.
      A recent tsunami triggered by a magnitude 8.8 earthquake off Russia’s Kamchatka Peninsula sent pressure waves to the upper layer of the atmosphere, NASA scientists have reported. While the tsunami did not wreak widespread damage, it was an early test for a detection system being developed at the agency’s Jet Propulsion Laboratory in Southern California.
      Called GUARDIAN (GNSS Upper Atmospheric Real-time Disaster Information and Alert Network), the experimental technology “functioned to its full extent,” said Camille Martire, one of its developers at JPL. The system flagged distortions in the atmosphere and issued notifications to subscribed subject matter experts in as little as 20 minutes after the quake. It confirmed signs of the approaching tsunami about 30 to 40 minutes before waves made landfall in Hawaii and sites across the Pacific on July 29 (local time).
      “Those extra minutes of knowing something is coming could make a real difference when it comes to warning communities in the path,” said JPL scientist Siddharth Krishnamoorthy.
      Near-real-time outputs from GUARDIAN must be interpreted by experts trained to identify the signs of tsunamis. But already it’s one of the fastest monitoring tools of its kind: Within about 10 minutes of receiving data, it can produce a snapshot of a tsunami’s rumble reaching the upper atmosphere.
      The dots in this graph indicate wave disturbances in the ionosphere as measured be-tween ground stations and navigation satellites. The initial spike shows the acoustic wave coming from the epicenter of the July 29 quake that caused the tsunami; the red squiggle shows the gravity wave the tsunami generated.NASA/JPL-Caltech The goal of GUARDIAN is to augment existing early warning systems. A key question after a major undersea earthquake is whether a tsunami was generated. Today, forecasters use seismic data as a proxy to predict if and where a tsunami could occur, and they rely on sea-based instruments to confirm that a tsunami is passing by. Deep-ocean pressure sensors remain the gold standard when it comes to sizing up waves, but they are expensive and sparse in locations.
      “NASA’s GUARDIAN can help fill the gaps,” said Christopher Moore, director of the National Oceanic and Atmospheric Administration Center for Tsunami Research. “It provides one more piece of information, one more valuable data point, that can help us determine, yes, we need to make the call to evacuate.”
      Moore noted that GUARDIAN adds a unique perspective: It’s able to sense sea surface motion from high above Earth, globally and in near-real-time.
      Bill Fry, chair of the United Nations technical working group responsible for tsunami early warning in the Pacific, said GUARDIAN is part of a technological “paradigm shift.” By directly observing ocean dynamics from space, “GUARDIAN is absolutely something that we in the early warning community are looking for to help underpin next generation forecasting.”
      How GUARDIAN works
      GUARDIAN takes advantage of tsunami physics. During a tsunami, many square miles of the ocean surface can rise and fall nearly in unison. This displaces a significant amount of air above it, sending low-frequency sound and gravity waves speeding upwards toward space. The waves interact with the charged particles of the upper atmosphere — the ionosphere — where they slightly distort the radio signals coming down to scientific ground stations of GPS and other positioning and timing satellites. These satellites are known collectively as the Global Navigation Satellite System (GNSS).
      While GNSS processing methods on Earth correct for such distortions, GUARDIAN uses them as clues.
      SWOT Satellite Measures Pacific Tsunami The software scours a trove of data transmitted to more than 350 continuously operating GNSS ground stations around the world. It can potentially identify evidence of a tsunami up to about 745 miles (1,200 kilometers) from a given station. In ideal situations, vulnerable coastal communities near a GNSS station could know when a tsunami was heading their way and authorities would have as much as 1 hour and 20 minutes to evacuate the low-lying areas, thereby saving countless lives and property.
      Key to this effort is the network of GNSS stations around the world supported by NASA’s Space Geodesy Project and Global GNSS Network, as well as JPL’s Global Differential GPS network that transmits the data in real time.
      The Kamchatka event offered a timely case study for GUARDIAN. A day before the quake off Russia’s northeast coast, the team had deployed two new elements that were years in the making: an artificial intelligence to mine signals of interest and an accompanying prototype messaging system.
      Both were put to the test when one of the strongest earthquakes ever recorded spawned a tsunami traveling hundreds of miles per hour across the Pacific Ocean. Having been trained to spot the kinds of atmospheric distortions caused by a tsunami, GUARDIAN flagged the signals for human review and notified subscribed subject matter experts.
      Notably, tsunamis are most often caused by large undersea earthquakes, but not always. Volcanic eruptions, underwater landslides, and certain weather conditions in some geographic locations can all produce dangerous waves. An advantage of GUARDIAN is that it doesn’t require information on what caused a tsunami; rather, it can detect that one was generated and then can alert the authorities to help minimize the loss of life and property. 
      While there’s no silver bullet to stop a tsunami from making landfall, “GUARDIAN has real potential to help by providing open access to this data,” said Adrienne Moseley, co-director of the Joint Australian Tsunami Warning Centre. “Tsunamis don’t respect national boundaries. We need to be able to share data around the whole region to be able to make assessments about the threat for all exposed coastlines.”
      To learn more about GUARDIAN, visit:
      https://guardian.jpl.nasa.gov
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov 
      Written by Sally Younger
      2025-117
      Explore More
      5 min read New U.S.-European Sea Level Satellite Will Help Safeguard Ships at Sea
      Article 21 hours ago 13 min read The Earth Observer Editor’s Corner: July–September 2025
      NOTE TO READERS: After more than three decades associated with or directly employed by NASA,…
      Article 2 days ago 21 min read Summary of the 11th ABoVE Science Team Meeting
      Introduction The NASA Arctic–Boreal Vulnerability Experiment (ABoVE) is a large-scale ecological study in the northern…
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      The U.S. Space Force honored Ed Mornston, associate deputy chief of Space Operations for Intelligence, for his 50 years of combined military and civilian service.

      View the full article
    • By Space Force
      The Department of the Air Force is aligning with a new federal initiative to overhaul how government services are designed and delivered, a move leaders say will sharpen warfighting readiness, increase lethality and save taxpayer dollars.
      View the full article
    • By Space Force
      The United States Space Force announced when Guardians will have the opportunity to be sized for and order the new service dress uniform.

      View the full article
  • Check out these Videos

×
×
  • Create New...