Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      7 min read
      NASA’s Parker Solar Probe Snaps Closest-Ever Images to Sun
      KEY POINTS
      NASA’s Parker Solar Probe has taken the closest ever images to the Sun, captured just 3.8 million miles from the solar surface. The new close-up images show features in the solar wind, the constant stream of electrically charged subatomic particles released by the Sun that rage across the solar system at speeds exceeding 1 million miles an hour. These images, and other data, are helping scientists understand the mysteries of the solar wind, which is essential to understanding its effects at Earth. On its record-breaking pass by the Sun late last year, NASA’s Parker Solar Probe captured stunning new images from within the Sun’s atmosphere. These newly released images — taken closer to the Sun than we’ve ever been before — are helping scientists better understand the Sun’s influence across the solar system, including events that can affect Earth.
      “Parker Solar Probe has once again transported us into the dynamic atmosphere of our closest star,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “We are witnessing where space weather threats to Earth begin, with our eyes, not just with models. This new data will help us vastly improve our space weather predictions to ensure the safety of our astronauts and the protection of our technology here on Earth and throughout the solar system.”
      Parker Solar Probe started its closest approach to the Sun on Dec. 24, 2024, flying just 3.8 million miles from the solar surface. As it skimmed through the Sun’s outer atmosphere, called the corona, in the days around the perihelion, it collected data with an array of scientific instruments, including the Wide-Field Imager for Solar Probe, or WISPR. 
      Parker Solar Probe has revolutionized our understanding of the solar wind thanks to the spacecraft’s many passes through the Sun’s outer atmosphere.
      Credit: NASA’s Goddard Space Flight Center/Joy Ng The new WISPR images reveal the corona and solar wind, a constant stream of electrically charged particles from the Sun that rage across the solar system. The solar wind expands throughout of the solar system with wide-ranging effects. Together with outbursts of material and magnetic currents from the Sun, it helps generate auroras, strip planetary atmospheres, and induce electric currents that can overwhelm power grids and affect communications at Earth. Understanding the impact of solar wind starts with understanding its origins at the Sun.
      The WISPR images give scientists a closer look at what happens to the solar wind shortly after it is released from the corona. The images show the important boundary where the Sun’s magnetic field direction switches from northward to southward, called the heliospheric current sheet. It also captures the collision of multiple coronal mass ejections, or CMEs — large outbursts of charged particles that are a key driver of space weather — for the first time in high resolution.
      “In these images, we’re seeing the CMEs basically piling up on top of one another,” said Angelos Vourlidas, the WISPR instrument scientist at the Johns Hopkins Applied Physics Laboratory, which designed, built, and operates the spacecraft in Laurel, Maryland. “We’re using this to figure out how the CMEs merge together, which can be important for space weather.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      This video, made from images taken by Parker Solar Probe’s WISPR instrument during its record-breaking flyby of the Sun on Dec. 25, 2024, shows the solar wind racing out from the Sun’s outer atmosphere, the corona. NASA/Johns Hopkins APL/Naval Research Lab When CMEs collide, their trajectory can change, making it harder to predict where they’ll end up. Their merger can also accelerate charged particles and mix magnetic fields, which makes the CMEs’ effects potentially more dangerous to astronauts and satellites in space and technology on the ground. Parker Solar Probe’s close-up view helps scientists better prepare for such space weather effects at Earth and beyond.
      Zooming in on Solar Wind’s Origins
      The solar wind was first theorized by preeminent heliophysicist Eugene Parker in 1958. His theories about the solar wind, which were met with criticism at the time, revolutionized how we see our solar system. Prior to Parker Solar Probe’s launch in 2018, NASA and its international partners led missions like Mariner 2, Helios, Ulysses, Wind, and ACE that helped scientists understand the origins of the solar wind — but from a distance. Parker Solar Probe, named in honor of the late scientist, is filling in the gaps of our understanding much closer to the Sun.
      At Earth, the solar wind is mostly a consistent breeze, but Parker Solar Probe found it’s anything but at the Sun. When the spacecraft reached within 14.7 million miles from the Sun, it encountered zig-zagging magnetic fields — a feature known as switchbacks. Using Parker Solar Probe’s data, scientists discovered that these switchbacks, which came in clumps, were more common than expected.
      When Parker Solar Probe first crossed into the corona about 8 million miles from the Sun’s surface in 2021, it noticed the boundary of the corona was uneven and more complex than previously thought.
      As it got even closer, Parker Solar Probe helped scientists pinpoint the origin of switchbacks at patches on the visible surface of the Sun where magnetic funnels form. In 2024 scientists announced that the fast solar wind — one of two main classes of the solar wind — is in part powered by these switchbacks, adding to a 50-year-old mystery.
      However, it would take a closer view to understand the slow solar wind, which travels at just 220 miles per second, half the speed of the fast solar wind.
      “The big unknown has been: how is the solar wind generated, and how does it manage to escape the Sun’s immense gravitational pull?” said Nour Rawafi, the project scientist for Parker Solar Probe at the Johns Hopkins Applied Physics Laboratory. “Understanding this continuous flow of particles, particularly the slow solar wind, is a major challenge, especially given the diversity in the properties of these streams — but with Parker Solar Probe, we’re closer than ever to uncovering their origins and how they evolve.”
      Understanding Slow Solar Wind
      The slow solar wind, which is twice as dense and more variable than fast solar wind, is important to study because its interplay with the fast solar wind can create moderately strong solar storm conditions at Earth sometimes rivaling those from CMEs.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      This artist’s concept shows a representative state of Earth’s magnetic bubble immersed in the slow solar wind, which averages some 180 to 300 miles per second. NASA’s Goddard Space Flight Center Conceptual Image Lab Prior to Parker Solar Probe, distant observations suggested there are actually two varieties of slow solar wind, distinguished by the orientation or variability of their magnetic fields. One type of slow solar wind, called Alfvénic, has small-scale switchbacks. The second type, called non-Alfvénic, doesn’t show these variations in its magnetic field. 
      As it spiraled closer to the Sun, Parker Solar Probe confirmed there are indeed two types. Its close-up views are also helping scientists differentiate the origins of the two types, which scientists believe are unique. The non-Alfvénic wind may come off features called helmet streamers — large loops connecting active regions where some particles can heat up enough to escape — whereas Alfvénic wind might originate near coronal holes, or dark, cool regions in the corona. 
      In its current orbit, bringing the spacecraft just 3.8 million miles from the Sun, Parker Solar Probe will continue to gather additional data during its upcoming passes through the corona to help scientists confirm the slow solar wind’s origins. The next pass comes Sept. 15, 2025.
      “We don’t have a final consensus yet, but we have a whole lot of new intriguing data,” said Adam Szabo, Parker Solar Probe mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Jul 10, 2025 Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division Missions NASA Centers & Facilities NASA Directorates Parker Solar Probe (PSP) Science & Research Science Mission Directorate Solar Wind Space Weather Explore More
      8 min read NASA’s Webb Scratches Beyond Surface of Cat’s Paw for 3rd Anniversary


      Article


      5 hours ago
      6 min read Smarter Searching: NASA AI Makes Science Data Easier to Find


      Article


      1 day ago
      2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica


      Article


      1 day ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA test pilot Nils Larson inspects the agency’s F-15D research aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, ahead of a calibration flight for a newly installed near-field shock-sensing probe. Mounted on the F-15D, the probe is designed to measure shock waves generated by the X-59 quiet supersonic aircraft during flight. The data will help researchers better understand how shock waves behave in close proximity to the aircraft, supporting NASA’s Quesst mission to enable quiet supersonic flight over land.NASA/Steve Freeman NASA test pilot Nils Larson inspects the agency’s F-15D research aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, ahead of a calibration flight for a newly installed near-field shock-sensing probe. Mounted on the F-15D, the probe is designed to measure shock waves generated by the X-59 quiet supersonic aircraft during flight. The data will help researchers better understand how shock waves behave in close proximity to the aircraft, supporting NASA’s Quesst mission to enable quiet supersonic flight over land.NASA/Steve Freeman NASA’s F-15D research aircraft conducts a test flight near Edwards, California, with a newly installed near-field shock-sensing probe. Identical to a previously flown version that was intended as the backup, this new probe will capture shock wave data near the X-59 as it flies faster than the speed of sound, supporting NASA’s Quesst mission.NASA/Jim Ross NASA’s F-15D research aircraft conducts a test flight near Edwards, California, with a newly installed near-field shock-sensing probe. Identical to a previously flown version that was intended as the backup, this new probe will capture shock wave data near the X-59 as it flies faster than the speed of sound, supporting NASA’s Quesst mission.NASA/Jim Ross When you’re testing a cutting-edge NASA aircraft, you need specialized tools to conduct tests and capture data –but if those tools need maintenance, you need to wait until they’re fixed. Unless you have a backup. That’s why NASA recently calibrated a new shock-sensing probe to capture shock wave data when the agency’s X-59 quiet supersonic research aircraft begins its test flights.
      When an aircraft flies faster than the speed of sound, it produces shock waves that travel through the air, creating loud sonic booms. The X-59 will divert those shock waves, producing just a quiet supersonic thump. Over the past few weeks, NASA completed calibration flights on a new near-field shock-sensing probe, a cone-shaped device that will capture data on the shock waves that the X-59 will generate.
      This shock-sensing probe is mounted to an F-15D research aircraft that will fly very close behind the X-59 to collect the data NASA needs. The new unit will serve as NASA’s primary near-field probe, with an identical model NASA developed last year acting as a backup mounted to an additional F-15B.
      The two units mean the X-59 team has a ready alternative if the primary probe needs maintenance or repairs. For flight tests like the X-59’s – where data gathering is crucial and operations revolve around tight timelines, weather conditions, and other variables – backups for critical equipment help to ensure continuity, maintain schedule, and preserve efficiency of operations.
      “If something happens to the probe, like a sensor failing, it’s not a quick fix,” said Mike Frederick, principal investigator for the probe at NASA’s Armstrong Flight Research Center in Edwards, California. “The other factor is the aircraft itself. If one needs maintenance, we don’t want to delay X-59 flights.”
      To calibrate the new probe, the team measured the shock waves of a NASA F/A-18 research aircraft. Preliminary results indicated that the probe successfully captured pressure changes associated with shock waves, consistent with the team’s expectations. Frederick and his team are now reviewing the data to confirm that it aligns with ground mathematical models and meets the precision standards required for X-59 flights.
      Researchers at NASA Armstrong are preparing for additional flights with both the primary and backup probes on their F-15s. Each aircraft will fly supersonic and gather shock wave data from the other. The team is working to validate both the primary and backup probes to confirm full redundancy – in other words, making sure that they have a reliable backup ready to go.
      Share
      Details
      Last Updated Apr 17, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Armstrong Flight Research Center Commercial Supersonic Technology Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
      Article 20 hours ago 3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data
      Article 2 days ago 3 min read Going Home: NASA Retires S-3B Viking to POW/MIA Museum
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA/Johns Hopkins APL/Princeton/Ed Whitman NASA’s IMAP (Interstellar Mapping and Acceleration Probe) is loaded into the X-ray and Cryogenic Facility (XRCF) thermal vacuum chamber at NASA’s Marshall Space Flight Center in Huntsville, Alabama, in this photo from March 20, 2025. There, the spacecraft will undergo testing such as dramatic temperature changes to simulate the harsh environment of space.
      The IMAP mission is a modern-day celestial cartographer that will map the solar system by studying the heliosphere, a giant bubble created by the Sun’s solar wind that surrounds our solar system and protects it from harmful interstellar radiation. The IMAP mission will launch on a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida, no earlier than September 2025.
      Image credit: NASA/Johns Hopkins APL/Princeton/Ed Whitman
      View the full article
    • By NASA
      The innovative team of engineers and scientists from NASA, the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, and more than 40 other partner organizations across the country that created the Parker Solar Probe mission has been awarded the 2024 Robert J. Collier Trophy by the National Aeronautic Association (NAA). This annual award recognizes the most exceptional achievement in aeronautics and astronautics in America with respect to improving the performance, efficiency, and safety of air or space vehicles in the previous year.   
      “Congratulations to the entire Parker Solar Probe team for this well-earned recognition,” said NASA acting Administrator Janet Petro. “This mission’s trailblazing research is rewriting the textbooks on solar science by going to a place no human-made object has ever been and advancing NASA’s efforts to better understand our solar system and the Sun’s influence, with lasting benefits for us all. As the first to touch the Sun and fastest human-made object ever built, Parker Solar Probe is a testament to human ingenuity and discovery.”
      An artist’s concept of NASA’s Parker Solar Probe. NASA On Dec. 24, 2024, Parker Solar Probe made its closest approach to the Sun, passing deep within the Sun’s corona, just 3.8 million miles above the Sun’s surface and at a top speed of close to 430,000 mph, ushering in a new era of scientific discovery and space exploration.
      “This award is a recognition of the unrelenting dedication and hard work of the Parker Solar Probe team. I am so proud of this team and honored to have been a part of it,” said Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “By studying the Sun closer than ever before, we continue to advance our understanding of not only our closest star, but also stars across our universe. Parker Solar Probe’s historic close approaches to the Sun are a testament to the incredible engineering that made this record-breaking journey possible.”
      Three novel aerospace technology advancements were critical to enabling this record performance: The first is the Thermal Protection System, or heat shield, that protects the spacecraft and is built to withstand brutal temperatures as high as 2,500 degrees Fahrenheit. The Thermal Protection System allows Parker’s electronics and instruments to operate close to room temperature.
      Additional Parker innovations included first-of-their-kind actively cooled solar arrays that protect themselves from overexposure to intense solar energy while powering the spacecraft, and a fully autonomous spacecraft system that can manage its own flight behavior, orientation, and configuration for months at a time. Parker has relied upon all of these vital technologies every day since its launch almost seven years ago, in August 2018.
      “I am thrilled for the Parker Solar Probe team on receiving this well-deserved award,” said Joe Westlake, director of the Heliophysics Division at NASA Headquarters. “The new information about the Sun made available through this mission will improve our ability to prepare for space weather events across the solar system, as well as better understand the very star that makes life possible for us on Earth.”
      Parker’s close-up observations of solar events, such as coronal mass ejections and solar particle events, are critical to advancing our understanding of the science of our Sun and the phenomena that drive high-energy space weather events that pose risks to satellites, air travel, astronauts, and even power grids on Earth. Understanding the fundamental physics behind events which drive space weather will enable more reliable predictions and lower astronaut exposure to hazardous radiation during future deep space missions to the Moon and Mars.
      “This amazing team brought to life an incredibly difficult space science mission that had been studied, and determined to be impossible, for more than 60 years. They did so by solving numerous long-standing technology challenges and dramatically advancing our nation’s spaceflight capabilities,” said APL Director Ralph Semmel. “The Collier Trophy is well-earned recognition for this phenomenal group of innovators from NASA, APL, and our industry and research partners from across the nation.”
      First awarded in 1911, the Robert J. Collier Trophy winner is selected by a group of aviation leaders chosen by the NAA. The Collier Trophy is housed in the Smithsonian’s National Air and Space Museum in Washington.
      “Traveling three times closer to the Sun and seven times faster than any spacecraft before, Parker’s technology innovations enabled humanity to reach inside the Sun’s atmosphere for the first time,” said Bobby Braun, head of APL’s Space Exploration Sector. “We are all immensely proud that the Parker Solar Probe team will join a long legacy of prestigious aerospace endeavors that redefined technology and changed history.”
      “The Parker Solar Probe team’s achievement in earning the 2024 Collier is a shining example of determination, genius, and teamwork,” said NAA President and CEO Amy Spowart. “It’s a distinct honor for the NAA to acknowledge and celebrate the remarkable team that turned the impossible into reality.”
      Parker Solar Probe was developed as part of NASA’s Living With a Star program to explore aspects of the Sun-Earth system that directly affect life and society. The Living With a Star program is managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington. The Applied Physics Laboratory designed, built, and operates the spacecraft and manages the mission for NASA.
      By Geoff Brown
      Johns Hopkins University Applied Physics Laboratory
      Share








      Details
      Last Updated Mar 25, 2025 Editor Sarah Frazier Contact Abbey Interrante abbey.a.interrante@nasa.gov Location Goddard Space Flight Center Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division Parker Solar Probe (PSP) The Sun Explore More
      5 min read NASA’s Parker Solar Probe Makes History With Closest Pass to Sun


      Article


      3 months ago
      4 min read Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass


      Article


      5 months ago
      11 min read NASA Enters the Solar Atmosphere for the First Time, Bringing New Discoveries
      A major milestone and new results from NASA’s Parker Solar Probe were announced on Dec.…


      Article


      3 years ago
      View the full article
  • Check out these Videos

×
×
  • Create New...