Members Can Post Anonymously On This Site
The Next Full Moon is the Snow Moon
-
Similar Topics
-
By NASA
After delivering ten NASA science and technology payloads to the near side of the Moon through NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission 1 lander captured this image of a sunset from the lunar surface. Credit: Firefly Aerospace After landing on the Moon with NASA science and technology demonstrations March 2, Firefly Aerospace’s Blue Ghost Mission 1 concluded its mission March 16. Analysis of data returned to Earth from the NASA instruments continues, benefitting future lunar missions.
As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly’s Blue Ghost lunar lander delivered 10 NASA science and technology instruments to the Mare Crisium basin on the near side of the Moon. During the mission, Blue Ghost captured several images and videos, including imaging a total solar eclipse and a sunset from the surface of the Moon. The mission lasted for about 14 days, or the equivalent of one lunar day, and multiple hours into the lunar night before coming to an end.
“Firefly’s Blue Ghost Mission 1 marks the longest surface duration commercial mission on the Moon to date, collecting extraordinary science data that will benefit humanity for decades to come,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “With NASA’s CLPS initiative, American companies are now at the forefront of an emerging lunar economy that lights the way for the agency’s exploration goals on the Moon and beyond.”
All 10 NASA payloads successfully activated, collected data, and performed operations on the Moon. Throughout the mission, Blue Ghost transmitted 119 gigabytes of data back to Earth, including 51 gigabytes of science and technology data. In addition, all payloads were afforded additional opportunities to conduct science and gather more data for analysis, including during the eclipse and lunar sunset.
“Operating on the Moon is complex; carrying 10 payloads, more than has ever flown on a CLPS delivery before, makes the mission that much more impressive,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters. “Teams are eagerly analyzing their data, and we are extremely excited for the expected scientific findings that will be gained from this mission.”
Among other achievements, many of the NASA instruments performed first-of-their-kind science and technology demonstrations, including:
The Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity is now the deepest robotic planetary subsurface thermal probe, drilling up to 3 feet and providing a first-of-its kind demonstration of robotic thermal measurements at varying depths. The Lunar GNSS Receiver Experiment acquired and tracked Global Navigation Satellite Systems (GNSS) signals, from satellite networks such as GPS and Galileo, for the first time enroute to and on the Moon’s surface. The LuGRE payload’s record-breaking success indicates that GNSS signals could complement other navigation methods and be used to support future Artemis missions. It also acts as a stepping stone to future navigation systems on Mars. The Radiation Tolerant Computer successfully operated in transit through Earth’s Van Allen belts, as well as on the lunar surface into the lunar night, verifying solutions to mitigate radiation effects on computers that could make future missions safer for equipment and more cost effective. The Electrodynamic Dust Shield successfully lifted and removed lunar soil, or regolith, from surfaces using electrodynamic forces, demonstrating a promising solution for dust mitigation on future lunar and interplanetary surface operations. The Lunar Magnetotelluric Sounder successfully deployed five sensors to study the Moon’s interior by measuring electric and magnetic fields. The instrument allows scientists to characterize the interior of the Moon to depths up to 700 miles, or more than half the distance to the Moon’s center. The Lunar Environment heliospheric X-ray Imager captured a series of X-ray images to study the interaction of the solar wind and Earth’s magnetic field, providing insights into how space weather and other cosmic forces surrounding Earth affect the planet. The Next Generation Lunar Retroreflector successfully reflected and returned laser light from two Lunar Laser Ranging Observatories, returning measurements allowing scientists to precisely measure the Moon’s shape and distance from Earth, expanding our understanding of the Moon’s inner structure. The Stereo Cameras for Lunar Plume-Surface Studies instrument captured about 9,000 images during the spacecraft’s lunar descent and touchdown on the Moon, providing insights into the effects engine plumes have on the surface. The payload also operated during the lunar sunset and into the lunar night. The Lunar PlanetVac was deployed on the lander’s surface access arm and successfully collected, transferred, and sorted lunar soil using pressurized nitrogen gas, demonstrating a low-cost, low-mass solution for future robotic sample collection. The Regolith Adherence Characterization instrument examined how lunar regolith sticks to a range of materials exposed to the Moon’s environment, which can help test, improve, and protect spacecraft, spacesuits, and habitats from abrasive lunar dust or regolith. The data captured will benefit humanity in many ways, providing insights into how space weather and other cosmic forces may impact Earth. Establishing an improved awareness of the lunar environment ahead of future crewed missions will help plan for long-duration surface operations under Artemis.
To date, five vendors have been awarded 11 lunar deliveries under CLPS and are sending more than 50 instruments to various locations on the Moon, including the lunar South Pole and far side.
Learn more about NASA’s CLPS initiative at:
https://www.nasa.gov/clps
-end-
Alise Fisher
Headquarters, Washington
202-617-4977
alise.m.fisher@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
Antonia Jaramillo
Kennedy Space Center, Florida
321-501-8425
antonia.jaramillobotero@nasa.gov
Share
Details
Last Updated Mar 18, 2025 LocationNASA Headquarters Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Blue Ghost (lander) Johnson Space Center Kennedy Space Center NASA Headquarters View the full article
-
By USH
Io, Jupiter’s famous volcanic moon, is already the most volcanically active place in the solar system. But between Halloween and Christmas of 2024, something happened that was extreme, even by Io’s standards.
Its south pole erupted in a way astronomers weren’t even sure was possible. A super volcano exploded with such force that it was visible from space as a massive dark blotch in the atmosphere. In infrared, the eruption was so intense that it saturated scientific sensors.
How Big Was This Eruption? To grasp the scale, imagine Io were the size of Earth. This super volcano would cover an area larger than Texas, larger than Egypt. The aftermath would trigger a global volcanic winter lasting years, possibly decades.
The eruption unleashed energy equivalent to 260 Yellowstone's and its lava field could bury everything from New York to Kansas under 10 feet of molten rock or stretch from the Gulf of Mexico to the Great Lakes. Every minute, the eruption released energy equal to 1.5 million Hiroshima bombs.
Just think about this: Earth’s most devastating volcanic event, the Siberian Traps eruption, lasted for a million years and led to one of the worst mass extinctions in history. Io’s super volcano, at its current rate, would surpass that in just 800 years. Over a million years, it could spew out the equivalent of 1% of Earth’s entire mantle. If the volume of this eruption were spread evenly across Earth, our planet’s landscape would be completely transformed in a matter of days.
Even in a solar system filled with astonishing phenomena, Io continues to shock and surprise us.
View the full article
-
By NASA
This picture, captured from the surface of the Moon, shows Firefly’s Blue Ghost lunar lander, which performed operations on the Moon from March 2, to March 16, 2025, in the foreground, and Earth in the sky above it. Credit: Firefly Aerospace NASA and Firefly Aerospace will host a news conference at 2 p.m. EDT Tuesday, March 18, from NASA’s Johnson Space Center in Houston to discuss the company’s successful Blue Ghost Mission 1 on the Moon’s surface.
Watch the news conference on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
U.S. media interested in participating in person or remotely must request accreditation by 5 p.m., Monday, March 17, by contacting the NASA Johnson newsroom at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is online. To ask questions via phone, media must dial into the news conference no later than 15 minutes prior to the start of the call.
Firefly’s Blue Ghost lunar lander touched down March 2, on the Moon’s Mare Crisium basin. The lander’s NASA payloads were activated, collected science data, and performed operations as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term lunar presence. The mission is not designed to survive through the lunar night; however, Blue Ghost continued operations for five hours after lunar sunset on March 16.
Participants will include:
Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters in Washington Jason Kim, CEO, Firefly Aerospace Ray Allensworth, spacecraft program director, Firefly Adam Schlesinger, CLPS project manager, NASA Johnson The Blue Ghost Mission 1 mission launched at 1:11 a.m., Jan. 15, on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The lander delivered 10 NASA science investigations and technology demonstrations including testing and demonstrating lunar drilling technology, regolith (lunar rocks and soil) sample collection capabilities, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation. The data captured will benefit humans on Earth in many ways, providing insights into how space weather and other cosmic forces impact our home planet.
NASA continues to work with multiple American companies to deliver science and technology to the lunar surface through the agency’s CLPS initiative. This pool of companies may bid on NASA contracts for end-to-end lunar surface delivery services, including all payload integration and operations, launching from Earth and landing on the surface of the Moon.
Through the Artemis campaign, commercial robotic deliveries will perform science experiments, test technologies, and demonstrate capabilities on and around the Moon to help NASA explore in advance of Artemis Generation astronaut missions to the lunar surface, and ultimately crewed missions to Mars.
For more information about the agency’s Commercial Lunar Payload Services initiative:
https://www.nasa.gov/clps
-end-
Karen Fox / Alise Fisher
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / alise.m.fisher@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
Share
Details
Last Updated Mar 17, 2025 LocationNASA Headquarters Related Terms
Missions Artemis Commercial Lunar Payload Services (CLPS) View the full article
-
By NASA
Although NASA’s Lucy spacecraft’s upcoming encounter with the asteroid Donaldjohanson is primarily a mission rehearsal for later asteroid encounters, a new paper suggests that this small, main belt asteroid may have some surprises of its own. New modeling indicates that Donaldjohanson may have been formed about 150 million years ago when a larger parent asteroid broke apart; its orbit and spin properties have undergone significant evolution since.
This artist’s concept compares the approximate size of Lucy’s next asteroid target, Donaldjohanson, to the smallest main belt asteroids previously visited by spacecraft — Dinkinesh, visited by Lucy in November 2023, and Steins — as well as two recently explored near-Earth asteroids, Bennu and Ryugu. Credits: SwRI/ESA/OSIRIS/NASA/Goddard/Johns Hopkins APL/NOIRLab/University of Arizona/JAXA/University of Tokyo & Collaborators When the Lucy spacecraft flies by this approximately three-mile-wide space rock on April 20, 2025, the data collected could provide independent insights on such processes based on its shape, surface geology and cratering history.
“Based on ground-based observations, Donaldjohanson appears to be a peculiar object,” said Simone Marchi, deputy principal investigator for Lucy of Southwest Research Institute in Boulder, Colorado and lead author of the research published in The Planetary Science Journal. “Understanding the formation of Donaldjohanson could help explain its peculiarities.”
“Data indicates that it could be quite elongated and a slow rotator, possibly due to thermal torques that have slowed its spin over time,” added David Vokrouhlický, a professor at the Charles University, Prague, and co-author of the research.
Lucy’s target is a common type of asteroid, composed of silicate rocks and perhaps containing clays and organic matter. The new paper indicates that Donaldjohanson is a likely member of the Erigone collisional asteroid family, a group of asteroids on similar orbits that was created when a larger parent asteroid broke apart. The family originated in the inner main belt not very far from the source regions of the near-Earth asteroids Bennu and Ryugu, recently visited respectively by NASA’s OSIRIS-REx and JAXA’s (Japan Aerospace Exploration Agency’s) Hayabusa2 missions.
“We can hardly wait for the flyby because, as of now, Donaldjohanson’s characteristics appear very distinct from Bennu and Ryugu. Yet, we may uncover unexpected connections,” added Marchi.
“It’s exciting to put together what we’ve been able to glean about this asteroid,” said Keith Noll, Lucy project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “But Earth-based observing and theoretical models can only take us so far – to validate these models and get to the next level of detail we need close-up data. Lucy’s upcoming flyby will give us that.”
Donaldjohanson is named for the paleontologist who discovered Lucy, the fossilized skeleton of an early hominin found in Ethiopia in 1974, which is how the Lucy mission got its name. Just as the Lucy fossil provided unique insights into the origin of humanity, the Lucy mission promises to revolutionize our knowledge of the origin of humanity’s home world. Donaldjohanson is the only named asteroid so far to be visited while its namesake is still living.
“Lucy is an ambitious NASA mission, with plans to visit 11 asteroids in its 12-year mission to tour the Trojan asteroids that are located in two swarms leading and trailing Jupiter,” said SwRI’s Dr. Hal Levison, mission principal investigator at the Boulder, Colorado branch of Southwest Research Institute in San Antonio, Texas. “Encounters with main belt asteroids not only provide a close-up view of those bodies but also allow us to perform engineering tests of the spacecraft’s innovative navigation system before the main event to study the Trojans. These relics are effectively fossils of the planet formation process, holding vital clues to deciphering the history of our solar system.”
Lucy’s principal investigator is based out of the Boulder, Colorado, branch of Southwest Research Institute, headquartered in San Antonio. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space in Littleton, Colorado, built the spacecraft. Lucy is the 13th mission in NASA’s Discovery Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Discovery Program for the agency’s Science Mission Directorate in Washington.
By Deb Schmid and Katherine Kretke, Southwest Research Institute
Media Contact:
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Mar 17, 2025 EditorMadison OlsonContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
Goddard Space Flight Center Lucy Missions Planetary Science Planetary Science Division Explore More
3 min read NASA’s Lucy Spacecraft Takes Its 1st Images of Asteroid Donaldjohanson
Article 3 weeks ago 3 min read NASA’s Lucy Asteroid Target Gets a Name
Article 2 years ago 4 min read NASA Lucy Images Reveal Asteroid Dinkinesh to be Surprisingly Complex
Article 10 months ago View the full article
-
By NASA
NICER (left) is shown mounted to the International Space Station, and LEXI (right) is shown attached to the top of Firefly Aerospace’s Blue Ghost in an artist’s rendering.NASA/Firefly Aerospace The International Space Station supports a wide range of scientific activities from looking out at our universe to breakthroughs in medical research, and is an active proving ground for technology for future Moon exploration missions and beyond. Firefly Aerospace’s Blue Ghost Mission-1 landed on the Moon on March 2, 2025, kicking off science and technology operations on the surface, including three experiments either tested on or enabled by space station research. These projects are helping scientists study space weather, navigation, and computer performance in space— knowledge crucial for future Moon missions.
One of the experiments, the Lunar Environment Heliospheric X-ray Imager (LEXI), is a small telescope designed to study the Earth’s magnetic environment and its interaction with the solar wind. Like the Neutron star Interior Composition Explorer (NICER) telescope mounted outside of the space station, LEXI observes X-ray sources. LEXI and NICER observed the same X-ray star to calibrate LEXI’s instrument and better analyze the X-rays emitted from Earth’s upper atmosphere, which is LEXI’s primary target. LEXI’s study of the interaction between the solar wind and Earth’s protective magnetosphere could help researchers develop methods to safeguard future space infrastructure and understand how this boundary responds to space weather.
Other researchers sent the Radiation Tolerant Computer System (RadPC) to the Moon to test how computers can recover from radiation-related faults. Before RadPC flew on Blue Ghost, researchers tested a radiation tolerant computer on the space station and developed an algorithm to detect potential hardware faults and prevent critical failures. RadPC aims to demonstrate computer resilience in the Moon’s radiation environment. The computer can gauge its own health in real time, and RadPC can identify a faulty location and repair it in the background as needed. Insights from this investigation could improve computer hardware for future deep-space missions.
In addition, the Lunar Global Navigation Satellite System (GNSS) Receiver Experiment (LuGRE) located on the lunar surface has officially received a GNSS signal at the farthest distance from Earth, the same signals that on Earth are used for navigation on everything from smartphones to airplanes. Aboard the International Space Station, Navigation and Communication Testbed (NAVCOM) has been testing a backup system to Earth’s GNSS using ground stations as an alternative method for lunar navigation where GNSS signals may have limitations. Bridging existing systems with emerging lunar-specific navigation solutions could help shape how spacecraft navigate the Moon on future missions.
The International Space Station serves as an important testbed for research conducted on missions like Blue Ghost and continues to lay the foundation for technologies of the future.
Keep Exploring Discover More Topics From NASA
International Space Station News
Space Station Research and Technology Tools and Information
Commercial Lunar Payload Services (CLPS)
The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping…
Space Station Research Results
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.