Jump to content

NASA Tests Drones to Provide Micrometeorology, Aid in Fire Response


Recommended Posts

  • Publishers
Posted
5 Min Read

NASA Tests Drones to Provide Micrometeorology, Aid in Fire Response

Brayden Chamberlain, UAS Pilot in Command, performs pre-flight checks on the NASA Alta X uncrewed aerial system (UAS) during NASA FireSense’s uncrewed aerial system (UAS) technology demonstration in Missoula, Montana.
Pilot in command Brayden Chamberlain performs pre-flight checks on the NASA Alta X quadcopter during the FireSense uncrewed aerial system (UAS) technology demonstration in Missoula.<p class="MsoNormal" style="margin: 0in;font-size: 12pt;font-family: Aptos, sans-serif"><span style="font-size: 10pt;font-family: Arial, sans-serif"><span class="msoIns" style="color: teal"><ins cite="mailto:Tabor,%20Abby%20(ARC-DO)" datetime="2025-02-11T16:38"></ins></span></span></p>
Credits: NASA/Milan Loiacono

In Aug. 2024, a team of NASA researchers and partners gathered in Missoula, to test new drone-based technology for localized forecasting, or micrometeorology. Researchers attached wind sensors to a drone, NASA’s Alta X quadcopter, aiming to provide precise and sustainable meteorological data to help predict fire behavior.

Wildfires are increasing in number and severity around the world, including the United States, and wind is a major factor. It leads to unexpected and unpredictable fire growth, public threats, and fire fatalities, making micrometeorology a very effective tool to combat fire.

This composite image shows the NASA Alta X quadcopter taking off during one of eight flights it performed for the 2024 FireSense uncrewed aerial system (UAS) technology demonstration in Missoula, Montana. Mounted on top of the drone is a unique infrastructure designed at NASA Langley to carry a radiosonde and an anemometer – two sensors that measure wind speed and direction – into the sky. On the ground, UAS Pilot in Command Brayden Chamberlain performs final pre-flight checks.
This composite image shows the NASA Alta X quadcopter taking off during one of eight flights it performed for the 2024 FireSense UAS technology demonstration in Missoula. Mounted on top of the drone is a unique infrastructure designed at NASA’s Langley Research Center in Hampton,Virginia, to carry sensors that measure wind speed and direction into the sky. On the ground, UAS pilot in command Brayden Chamberlain performs final pre-flight checks.
NASA/Milan Loiacono

The campaign was run by NASA’s FireSense project, focused on addressing challenges in wildland fire management by putting NASA science and technology in the hands of operational agencies.

“Ensuring that the new technology will be easily adoptable by operational agencies such as the U.S. Forest Service and the National Weather Service was another primary goal of the campaign,” said Jacqueline Shuman, FireSense project scientist at NASA’s Ames Research Center in California’s Silicon Valley.

The FireSense team chose the Alta X drone because the U.S. Forest Service already has a fleet of the quadcopters and trained drone pilots, which could make integrating the needed sensors – and the accompanying infrastructure – much easier and more cost-effective for the agency.

UAS Pilot in Command Brayden Chamberlain flashes a ‘good to go’ signal to the command tent, indicating that the NASA Alta X quadcopter is prepped for takeoff.
The UAS pilot in command, Brayden Chamberlain, flashes a “good to go” signal to the command tent, indicating that the NASA Alta X quadcopter is prepped for takeoff. Behind Chamberlain, the custom structure attached to the quadcopter holds a radiosonde (small white box) and an anemometer (hidden from view), which will collect data on wind speed and direction, humidity, temperature, and pressure.
NASA/Milan Loiacono

The choice of the two sensors for the drone’s payload was also driven by their adoptability.

The first, called a radiosonde, measures wind direction and speed, humidity, temperature, and pressure, and is used daily by the National Weather Service. The other sensor, an anemometer, measures wind speed and direction, and is used at weather stations and airports around the world.

Two images sit side by side. On the left, a small white box with a silver antenna coming out the top and a black antenna coming out the bottom sits in a black structure. On the right, a silver cylinder protrudes from a black base, with two silver, interlocking rings forming a sphere on top. In the back of both photos is a green field.
The two sensors mounted on the NASA Alta X quadcopter are a radiosonde (left) and an anemometer (right), which measure wind speed and direction. The FireSense teams hopes that by giving them wings, researchers can enable micrometeorology to better predict fire and smoke behavior. 
NASA/Milan Loiacono

“Anemometers are everywhere, but are usually stationary,” said Robert McSwain, the FireSense uncrewed aerial system (UAS) lead, based at NASA’s Langley Research Center in Hampton, Virginia. “We are taking a sensor type that is already used all over the world, and giving it wings.”

Anemometers are everywhere, but are usually stationary. We are taking a sensor type that is already used all over the world, and giving it wings.

Robert Mcswain

Robert Mcswain

FireSense Uncrewed Aerial System (UAS) Lead

Both sensors create datasets that are already familiar to meteorologists worldwide, which opens up the potential applications of the platform.

Current Forecasting Methods: Weather Balloons

Traditionally, global weather forecasting data is gathered by attaching a radiosonde to a weather balloon and releasing it into the air. This system works well for regional weather forecasts. But the rapidly changing environment of wildland fire requires more recurrent, pinpointed forecasts to accurately predict fire behavior. It’s the perfect niche for a drone.

Two photos sit side by side. on the left, three male college students work on a large white balloon about three feet in diameter: one is kneeling with a large metal gas canister, the middle student holds the balloon up, and the third student holds a small white instrument attached to the balloon via string. On the right, the same large white balloon drifts into the sky, which is medium blue and mottled with gray clouds.
Left: Steven Stratham (right) attaches a radiosonde to the string of a weather balloon as teammates Travis Christopher (left) and Danny Johnson (center) prepare the balloon for launch. This team of three from Salish Kootenai College is one of many college teams across the nation trained to prepare and launch weather balloons.
Right: One of these weather balloons lifts into the sky, with the radiosonde visible at the end of the string.
NASA/Milan Loiacono

“These drones are not meant to replace the weather balloons,” said Jennifer Fowler, FireSense’s project manager at Langley. “The goal is to create a drop-in solution to get more frequent, localized data for wildfires – not to replace all weather forecasting.”

The goal is to create a drop-in solution to get more frequent, localized data for wildfires – not to replace all weather forecasting.

Jennifer Fowler

Jennifer Fowler

FireSense Project Manager

Drones Provide Control, Repeat Testing, Sustainability

Drones can be piloted to keep making measurements over a precise location – an on-site forecaster could fly one every couple of hours as conditions change – and gather timely data to help determine how weather will impact the direction and speed of a fire.

Fire crews on the ground may need this information to make quick decisions about where to deploy firefighters and resources, draw fire lines, and protect nearby communities.

A reusable platform, like a drone, also reduces the financial and environmental impact of forecasting flights. 

“A weather balloon is going to be a one-off, and the attached sensor won’t be recovered,” Fowler said. “The instrumented drone, on the other hand, can be flown repeatedly.”

The NASA Alta X quadcopter sits in a field in Missoula, Montana, outfitted with a structure engineered at Langley Research Center to carry a radiosonde and an anemometer into the air. In the background, two deer make their way across the field. The drone and its payload were part of the August 2024 FireSense campaign, which looked at the applicability of using controllable, repeatable airborne measurements to more accurately predict fire and smoke behavior.
The NASA Alta X quadcopter sits in a field in Missoula, outfitted with a special structure to carry a radiosonde (sensor on the left) and an anemometer (sensor on the right) into the air. This structure was engineered at NASA’s Langley Research Center to ensure the sensors are far enough from the rotors to avoid interfering with the data collected, but without compromising the stability of the drone.
NASA/Milan Loiacono

The Missoula Campaign

Before such technology can be sent out to a fire, it needs to be tested. That’s what the FireSense team did this summer.

Smoke from the nearby Miller Peak Fire drifts by the air control tower at Missoula Montana Airport on August 29, 2024. Miller Peak was one of several fires burning in and around Missoula that month, creating a smoke-impacted environment which, combined with the mountainous terrain, makes traditional forecasting methods difficult: a problem the FireSense team is working to solve.
Smoke from the nearby Miller Peak Fire drifts by the air control tower at Missoula Airport on August 29, 2024. Miller Peak was one of several fires burning in and around Missoula that month, creating a smokey environment which, combined with the mountainous terrain, made the area an ideal location to test FireSense’s new micrometeorology technology.
NASA/Milan Loiacono

McSwain described the conditions in Missoula as an “alignment of stars” for the research: the complex mountain terrain produces erratic, historically unpredictable winds, and the sparsity of monitoring instruments on the ground makes weather forecasting very difficult. During the three-day campaign, several fires burned nearby, which allowed researchers to test how the drones performed in smokey conditions.

A drone team out of NASA Langley conducted eight data-collection flights in Missoula. Before each drone flight, student teams from the University of Idaho in Moscow, Idaho, and Salish Kootenai College in Pablo, Montana, launched a weather balloon carrying the same type of radiometer.

Two images sit side by side. On the left, a team of six college students gather around a giant white weather balloon, some standing some sitting. On the ground around them are gear like a tarp, gas lines, and multiple gas canisters. In the photo on the right, two adult men hold a large quadcopter drone sideways between them, rotors akimbo.
Left: Weather balloon teams from University of Idaho and Salish Kootenai College prepare a weather balloon for launch on the second day of the FireSense campaign in Missoula.
Right: NASA Langley drone crew members Todd Ferrante (left) and Brayden Chamberlain (right) calibrate the internal sensors of the NASA Alta X quadcopter before its first test flight on Aug. 27, 2024.

Once those data sets were created, they needed to be transformed into a usable format. Meteorologists are used to the numbers, but incident commanders on an active fire need to see the data in a form that allows them to quickly understand which conditions are changing, and how. That’s where data visualization partners come in. For the Missoula campaign, teams from MITRE, NVIDIA, and Esri joined NASA in the field.

An early data visualization from the Esri team shows the flight path of different weather balloon launches from the first day of the FireSense uncrewed aerial system (UAS) technology demonstration in Missoula, Montana. The paths are color coded by wind speed, from purple (low wind) to bright yellow (high wind).
An early data visualization from the Esri team shows the flight paths of weather balloons launched on the first day of the FireSense UAS technology demonstration in Missoula. The paths are color-coded by wind speed, from purple (low wind) to bright yellow (high wind).
NASA/Milan Loiacono

Measurements from both the balloon and the drone platforms were immediately sent to the on-site data teams. The MITRE team, together with NVIDIA, tested high-resolution artificial intelligence meteorological models, while the Esri team created comprehensive visualizations of flight paths, temperatures, and wind speed and direction. These visual representations of the data make conclusions more immediately apparent to non-meteorologists.

What’s Next?

Development of drone capabilities for fire monitoring didn’t begin in Missoula, and it won’t end there.

“This campaign leveraged almost a decade of research, development, engineering, and testing,” said McSwain. “We have built up a UAS flight capability that can now be used across NASA.”

This campaign leveraged almost a decade of research, development, engineering, and testing. We have built up a UAS flight capability that can now be used across NASA.  

Robert Mcswain

Robert Mcswain

FireSense Uncrewed Aerial System (UAS) Lead

The NASA Alta X and its sensor payload will head to Alabama and Florida in spring 2025, incorporating improvements identified in Montana. There, the team will perform another technology demonstration with wildland fire managers from a different region.

To view more photos from the FireSense campaign visit: https://nasa.gov/firesense

The FireSense project is led by NASA Headquarters in Washington and sits within the Wildland Fires program, with the project office based at NASA Ames. The goal of FireSense is to transition Earth science and technological capabilities to operational wildland fire management agencies, to address challenges in U.S. wildland fire management before, during, and after a fire. 

About the Author

Milan Loiacono

Milan Loiacono

Science Communication Specialist

Milan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The high-rise bridge that serves as the primary access point for employees and visitors to NASA’s Kennedy Space Center in Florida now is fully operational. In the late hours of March 18, 2025, the Florida Department of Transportation (FDOT) opened the westbound portion of the NASA Causeway Bridge, which spans the Indian River Lagoon and connects NASA Kennedy and Cape Canaveral Space Force Station to the mainland.
      This new bridge span (right side of photo) sits alongside its twin on the eastbound side, which has accommodated traffic in both directions since FDOT opened it on June 9, 2023. The new structure replaces the old two-lane drawbridge which operated at that location for nearly 60 years.
      “The old drawbridge served us well, witnessing decades of spaceflights since the Apollo era and supporting Kennedy’s transition to a multi-user spaceport,” said Kennedy’s Acting Director Kelvin Manning. “The new bridge will see NASA send American astronauts back to the Moon and on to Mars, and it will support the continued rapid growth of America’s commercial space industry here at Earth’s premier spaceport.”
      At 4,025 feet long, the new NASA Causeway Bridge is about 35% longer than its predecessor, featuring a 65-foot waterway clearance and a channel wide enough to handle larger vessels carrying cargo necessary for Kennedy to continue launching humanity’s future.
      The bridge sits on over 1,000 concrete pilings which total more than 22 miles in length. Nearly 270 concrete I-beams, each weighing hundreds of thousands of pounds, support the bridge, along with over 40,000 cubic yards of concrete and over 8.7 million pounds of steel. All 110 spans of the old drawbridge were demolished during the construction, with much of the material recycled for future projects.
      A $90 million federal infrastructure grant secured in July 2019 by Space Florida via the U.S. Department of Transportation funded nearly 50% of the drawbridge replacement as well the widening of nearby Space Commerce Way. NASA and the state of Florida provided the remaining funding for the upgrades.
      Photo credit: NASA/Glenn Benson
      View the full article
    • By NASA
      This compressed, resolution-limited gif shows the view of lunar sunset from one of the six Stereo Cameras for Lunar-Plume Surface Studies (SCALPSS) 1.1 cameras on Firefly’s Blue Ghost lander, which operated on the Moon’s surface for a little more than 14 days and stopped, as anticipated, a few hours into lunar night. The bright, swirly light moving across the surface on the top right of the image is sunlight reflecting off the lander. Images taken by SCALPSS 1.1 during Blue Ghost’s descent and landing, as well as images from the surface during the long lunar day, will help researchers better understand the effects of a lander’s engine plumes on the lunar soil, or regolith. The instrument collected almost 9000 images and returned 10 GB of data. This data is important as trips to the Moon increase and the number of payloads touching down in proximity to one another grows. The SCALPSS 1.1 project is funded by the Space Technology Mission Directorate’s Game Changing Development program. SCALPSS was developed at NASA’s Langley Research Center in Hampton, Virginia, with support from Marshall Space Flight Center in Huntsville, Alabama.NASA/Olivia TyrrellView the full article
    • By NASA
      NASA astronauts Nick Hague, Suni Williams, Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov land in a SpaceX Dragon spacecraft in the water off the coast of Tallahassee, Florida on March 18, 2025. Hague, Gorbunov, Williams, and Wilmore returned from a long-duration science expedition aboard the International Space Station. Credit: NASA/Keegan Barber NASA’s SpaceX Crew-9 completed the agency’s ninth commercial crew rotation mission to the International Space Station on Tuesday, splashing down safely in a SpaceX Dragon spacecraft off the coast of Tallahassee, Florida, in the Gulf of America.
      NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov, returned to Earth at 5:57 p.m. EDT. Teams aboard SpaceX recovery vessels retrieved the spacecraft and its crew. After returning to shore, the crew will fly to NASA’s Johnson Space Center in Houston and reunite with their families.
      “We are thrilled to have Suni, Butch, Nick, and Aleksandr home after their months-long mission conducting vital science, technology demonstrations, and maintenance aboard the International Space Station,” said NASA acting Administrator Janet Petro. “Per President Trump’s direction, NASA and SpaceX worked diligently to pull the schedule a month earlier. This international crew and our teams on the ground embraced the Trump Administration’s challenge of an updated, and somewhat unique, mission plan, to bring our crew home. Through preparation, ingenuity, and dedication, we achieve great things together for the benefit of humanity, pushing the boundaries of what is possible from low Earth orbit to the Moon and Mars.”
      Hague and Gorbunov lifted off at 1:17 p.m. Sept. 28, 2024, on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. The next day, they docked to the forward-facing port of the station’s Harmony module. Williams and Wilmore launched aboard Boeing’s Starliner spacecraft and United Launch Alliance Atlas V rocket on June 5, 2024, from Space Launch Complex 41 as part of the agency’s Boeing Crew Flight Test. The duo arrived at the space station on June 6. In August, NASA announced the uncrewed return of Starliner to Earth and integrated Wilmore and Williams as part of the space station’s Expedition 71/72 for a return on Crew-9. The crew of four undocked at 1:05 a.m. Tuesday to begin the trip home.
      Williams and Wilmore traveled 121,347,491 miles during their mission, spent 286 days in space, and completed 4,576 orbits around Earth. Hague and Gorbunov traveled 72,553,920 miles during their mission, spent 171 days in space, and completed 2,736 orbits around Earth. The Crew-9 mission was the first spaceflight for Gorbunov. Hague has logged 374 days in space over his two missions, Williams has logged 608 days in space over her three flights, and Wilmore has logged 464 days in space over his three flights.
      Throughout its mission, Crew-9 contributed to a host of science and maintenance activities and technology demonstrations. Williams conducted two spacewalks, joined by Wilmore for one and Hague for another, removing a radio frequency group antenna assembly from the station’s truss, collecting samples from the station’s external surface for analysis, installing patches to cover damaged areas of light filters on an X-ray telescope, and more. Williams now holds the record for total spacewalking time by a female astronaut, with 62 hours and 6 minutes outside of station, and is fourth on the all-time spacewalk duration list.
      The American crew members conducted more than 150 unique scientific experiments and technology demonstrations between them, with over 900 hours of research. This research included investigations on plant growth and quality, as well as the potential of stem cell technology to address blood diseases, autoimmune disorders, and cancers. They also tested lighting systems to help astronauts maintain circadian rhythms, loaded the first wooden satellite for deployment, and took samples from the space station’s exterior to study whether microorganisms can survive in space.
      The Crew-9 mission was the fourth flight of the Dragon spacecraft named Freedom. It also previously supported NASA’s SpaceX Crew-4, Axiom Mission 2, and Axiom Mission 3. The spacecraft will return to Florida for inspection and processing at SpaceX’s refurbishing facility at Cape Canaveral Space Force Station, where teams will inspect the Dragon, analyze data on its performance, and begin processing for its next flight.
      The Crew-9 flight is part of NASA’s Commercial Crew Program, and its return to Earth follows on the heels of NASA’s SpaceX Crew-10 launch, which docked to the station on March 16, beginning another long-duration science expedition.
      The goal of NASA’s Commercial Crew Program is safe, reliable, and cost-effective transportation to and from the space station and low Earth orbit. The program provides additional research time and has increased opportunities for discovery aboard humanity’s microgravity testbed for exploration, including helping NASA prepare for human exploration of the Moon and Mars.
      Learn more about NASA’s Commercial Crew Program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Amber Jacobson / Joshua Finch
      Headquarters, Washington
      202-358-1100
      amber.c.jacobson@nasa.gov / joshua.a.finch@nasa.gov
      Kenna Pell / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      kenna.m.pell@nasa.gov / sandra.p.jones@nasa.gov
      Steve Siceloff / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Mar 18, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Humans in Space Expedition 72 International Space Station (ISS) ISS Research Space Operations Mission Directorate View the full article
    • By NASA
      As part of NASA’s Advanced Capabilities for Emergency Response Operations flight tests in November 2024, Overwatch Aero flies a vertical takeoff and landing aircraft in Watsonville, California.Credit: NASA NASA will conduct a live flight test of aircraft performing simulated wildland fire response operations using a newly developed airspace management system at 9 a.m. PDT on Tuesday, March 25, in Salinas, California.
      NASA’s new portable airspace management system, part of the agency’s Advanced Capabilities for Emergency Response Operations (ACERO) project, aims to significantly expand the window of time crews have to respond to wildland fires. The system provides the air traffic awareness needed to safely send aircraft – including drones and remotely piloted helicopters – into wildland fire operations, even during low-visibility conditions. Current aerial firefighting operations are limited to times when pilots have clear visibility, which lowers the risk of flying into the surrounding terrain or colliding with other aircraft. This restriction grounds most aircraft at night and during periods of heavy smoke.
      During this inaugural flight test, researchers will use the airspace management system to coordinate the flight operations of two small drones, an electric vertical takeoff and landing aircraft, and a remotely piloted aircraft that will have a backup pilot aboard. The drones and aircraft will execute examples of critical tasks for wildland fire management, including weather data sharing, simulated aerial ignition flights, and communications relay.
      Media interested in viewing the ACERO flight testing must RSVP by 4 p.m. Friday, March 21, to the NASA Ames Office of Communications by email at: arc-dl-newsroom@mail.nasa.gov or by phone at 650-604-4789. NASA will release additional details, including address and arrival logistics, to media credentialed for the event. A copy of NASA’s media accreditation policy is online.
      NASA’s ACERO researchers will use data from the flight test to refine the airspace management system. The project aims to eventually provide this technology to wildland fire crews for use in the field, helping to save lives and property. This project is managed at NASA’s Ames Research Center in California’s Silicon Valley.
      For more information on ACERO, visit:
      https://go.nasa.gov/4bYEzsD
      -end-
      Rob Margetta
      Headquarters, Washington
      202-358-1600
      robert.j.margetta@nasa.gov
      Hillary Smith
      Ames Research Center, Silicon Valley
      650-604-4789
      hillary.smith@nasa.gov
      Share
      Details
      Last Updated Mar 18, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Ames Research Center Advanced Capabilities for Emergency Response Operations Aeronautics Aeronautics Research Mission Directorate Flight Innovation View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Media are invited to meet leaders in the space community during the 62nd annual Goddard Space Science Symposium, taking place from Wednesday, March 19, to Friday, March 21, at Martin’s Crosswinds in Greenbelt, Maryland. The symposium will also be streamed online.
      Hosted by the American Astronautical Society (AAS) in conjunction with NASA’s Goddard Space Flight Center in Greenbelt, the symposium examines the current state and future of space science and space exploration at large by convening leading minds across NASA, other government agencies, policy, academia, and industry – collectively navigating a path forward by identifying the opportunities and challenges ahead.
      This year’s theme, “Pathways and Partnerships for U.S. Leadership in Earth and Space Science,” highlights the evolving collaborative landscape between the public and private sectors, as well as how it is helping the United States remain and grow as a leading space power. 
      “Earth and space science are complex by nature, with a growing list of public and private enterprises carving out their space,” said Christa Peters-Lidard, co-chair of the symposium planning committee and Goddard’s director of sciences and exploration. “It’s an exciting time as we work to determine the future trajectory of space exploration in this new era, and the Goddard Space Science Symposium is an instrumental tool for gathering the insights of leading experts across a broad spectrum.”
      AAS President Ron Birk and Goddard Deputy Center Director Cynthia Simmons will deliver the symposium’s opening remarks on March 19, followed by panels on enabling science and exploration from the Moon to Mars and navigating space science and exploration policy. Greg Autry, associate provost for space commercialization and strategy at the University of Central Florida, will deliver the keynote address. The first day will conclude with an industry night reception.
      The second day of the symposium on Thursday, March 20, will feature panels on enhancing U.S. economic leadership through science, the Habitable Worlds Observatory, and the confluence of public science and the private sector. Gillian Bussey, deputy chief science officer for the U.S. Space Force, will serve as the luncheon speaker.
      Panels on the third and final day, March 21, will discuss integrating multi-sector data to advance Earth and space science, the Heliophysics Decadal Survey, and the space weather enterprise. Mark Clampin, acting deputy associate administrator for the NASA Science Mission Directorate, will provide the luncheon address.
      Media interested in arranging interviews with NASA speakers should contact Jacob Richmond, Goddard acting news chief.
      For more information on the Goddard Space Science Symposium and the updated program, or to register as a media representative, visit https://astronautical.org/events/goddard.
      For more information on NASA’s Goddard Space Flight Center, visit https://www.nasa.gov/goddard.
      Media Contact:
      Jacob Richmond
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Mar 18, 2025 EditorJamie AdkinsLocationNASA Goddard Space Flight Center Related Terms
      Goddard Space Flight Center View the full article
  • Check out these Videos

×
×
  • Create New...