Jump to content

Recommended Posts

Posted
Sentinel-1C interferogram of northern Chile

Launched just two months ago and still in the process of being commissioned for service, the Copernicus Sentinel-1C satellite is, remarkably, already showing how its radar data can be used to map the shape of Earth’s land surface with extreme precision.

These first cross-satellite ‘interferometry’ results assure its ability to monitor subsidence, uplift, glacier flow, and disasters such as landslides and earthquakes.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NICER (left) is shown mounted to the International Space Station, and LEXI (right) is shown attached to the top of Firefly Aerospace’s Blue Ghost in an artist’s rendering.NASA/Firefly Aerospace The International Space Station supports a wide range of scientific activities from looking out at our universe to breakthroughs in medical research, and is an active proving ground for technology for future Moon exploration missions and beyond. Firefly Aerospace’s Blue Ghost Mission-1 landed on the Moon on March 2, 2025, kicking off science and technology operations on the surface, including three experiments either tested on or enabled by space station research. These projects are helping scientists study space weather, navigation, and computer performance in space— knowledge crucial for future Moon missions.
      One of the experiments, the Lunar Environment Heliospheric X-ray Imager (LEXI), is a small telescope designed to study the Earth’s magnetic environment and its interaction with the solar wind. Like the Neutron star Interior Composition Explorer (NICER) telescope mounted outside of the space station, LEXI observes X-ray sources. LEXI and NICER observed the same X-ray star to calibrate LEXI’s instrument and better analyze the X-rays emitted from Earth’s upper atmosphere, which is LEXI’s primary target. LEXI’s study of the interaction between the solar wind and Earth’s protective magnetosphere could help researchers develop methods to safeguard future space infrastructure and understand how this boundary responds to space weather.
      Other researchers sent the Radiation Tolerant Computer System (RadPC) to the Moon to test how computers can recover from radiation-related faults. Before RadPC flew on Blue Ghost, researchers tested a radiation tolerant computer on the space station and developed an algorithm to detect potential hardware faults and prevent critical failures. RadPC aims to demonstrate computer resilience in the Moon’s radiation environment. The computer can gauge its own health in real time, and RadPC can identify a faulty location and repair it in the background as needed. Insights from this investigation could improve computer hardware for future deep-space missions.
      In addition, the Lunar Global Navigation Satellite System (GNSS) Receiver Experiment (LuGRE) located on the lunar surface has officially received a GNSS signal at the farthest distance from Earth, the same signals that on Earth are used for navigation on everything from smartphones to airplanes. Aboard the International Space Station, Navigation and Communication Testbed (NAVCOM) has been testing a backup system to Earth’s GNSS using ground stations as an alternative method for lunar navigation where GNSS signals may have limitations. Bridging existing systems with emerging lunar-specific navigation solutions could help shape how spacecraft navigate the Moon on future missions.
      The International Space Station serves as an important testbed for research conducted on missions like Blue Ghost and continues to lay the foundation for technologies of the future.
      Keep Exploring Discover More Topics From NASA
      International Space Station News
      Space Station Research and Technology Tools and Information
      Commercial Lunar Payload Services (CLPS)
      The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping…
      Space Station Research Results
      View the full article
    • By NASA
      The NISAR mission will help map crops and track their development through the entire growing season. Using synthetic aperture radar, the satellite will be able to observe both small plots of farmland and monitor trends across broad regions, gathering data to in-form agricultural decision making.Adobe Stock/Greg Kelton Data from the NISAR satellite will be used to map crop growth, track plant health, and monitor soil moisture — offering detailed, timely information for decision making.
      When it launches this year, the NISAR (NASA-ISRO Synthetic Aperture Radar) satellite will provide a powerful data stream that could help farmers in the U.S. and around the world. This new Earth mission by NASA and the Indian Space Research Organisation will help monitor the growth of crops from planting to harvest, generating crucial insights on how to time plantings, adjust irrigation schedules, and, ultimately, make the most of another precious resource: time.
      Using synthetic aperture radar, NISAR will discern the physical characteristics of crops, as well as the moisture content of the plants and the soil they grow in. The mission will have the resolution to see small plots of farmland, but a potentially more meaningful benefit will come from its broad, frequent coverage of agricultural regions.
      The satellite will image nearly all of Earth’s land twice every 12 days and will be able to resolve plots down to 30 feet (10 meters) wide. The cadence and resolution could allow users to zoom in to observe week-to-week changes on small farms or zoom out to monitor thousands of farms for broader trends. Such big-picture perspective will be useful for authorities managing crops or setting farm policy.
      Tapping NISAR data, decision-makers could, for example, estimate when rice seedlings were planted across a region and track their height and blooming through the season while also monitoring the wetness of the plants and paddies over time. An unhealthy crop or drier paddies may signal the need to shift management strategies.
      NISAR will provide maps of croplands on a global basis every two weeks. Observations will be uninterrupted by weather and provide up-to-date information on the large-scale trends that affect international food security. Credit: NASA/JPL-Caltech “It’s all about resource planning and optimizing, and timing is very important when it comes to crops: When is the best time to plant? When is the best time to irrigate? That is the whole game here,” said Narendra Das, a NISAR science team member and agricultural engineering researcher at Michigan State University in East Lansing.
      Mapping Crops
      NISAR is set to launch this year from ISRO’s Satish Dhawan Space Centre on India’s southeastern coast. Once in operation, it will produce about 80 terabytes of data products per day for researchers and users across numerous areas, including agriculture.
      Satellites have been used for large-scale crop monitoring for decades. Because microwaves pass through clouds, radar can be more effective at observing crops during rainy seasons than other technologies such as thermal and optical imaging. The NISAR satellite will be the first radar satellite to employ two frequencies, L- and S-band, which will enable it to observe a broader range of surface features than a single instrument working at one frequency.
      Microwaves from the mission’s radars will be able to penetrate the canopies of crops such as corn, rice, and wheat, then bounce off the plant stalks, soil, or water below, and then back to the sensor. This data will enable users to estimate the mass of the plant matter (biomass) that’s aboveground in an area. By interpreting the data over time and pairing it with optical imagery, users will be able to distinguish crop types based on growth patterns.
      Data gathered in 2017 by the European Sentinel-1 SAR satellite program shows changes to croplands in the region southeast of Florida’s Lake Okeechobee. Colors in the fields indicate various crops in different parts of their growth and harvest cycles. NISAR will gather similar data in L- and S-band radar frequencies.ESA; processing and visualization by Earth Big Data LLC Additionally, NISAR’s radars will measure how the polarization, or vertical and horizontal orientation of signals, changes after they bounce back to the satellite from the surface. This will enable a technique called polarimetry that, when applied to the data, will help identify crops and estimate crop production with better accuracy.
      “Another superpower of NISAR is that when its measurements are integrated with traditional satellite observations, especially vegetation health indexes, it will significantly enhance crop information,” added Brad Doorn, who oversees NASA’s water resources and agriculture research program.
      The NISAR satellite’s high-resolution data on which crops are present and how well they are growing could feed into agricultural productivity forecasts.
      “The government of India — or any government in the world — wants to know the crop acreage and the production estimates in a very precise way,” said Bimal Kumar Bhattacharya, the agricultural applications lead at ISRO’s Space Applications Centre in Ahmedabad. “The high-repeat time-series data of NISAR will be very, very helpful.”
      Tracking Soil Moisture
      The NISAR satellite can also help farmers gauge the water content in soil and vegetation. In general, wetter soils tend to return more signals and show up brighter in radar imagery than drier soils. There is a similar relationship with plant moisture.
      A collaboration between NASA and the Indian Space Research Organisation, NISAR will use synthetic aperture radar to offer insights into change in Earth’s ecosystems, including its agricultural lands. The spacecraft, depicted here in an artist’s concept, will launch from India.NASA/JPL-Caltech These capabilities mean that NISAR can estimate the water content of crops over a growing season to help determine if they are water-stressed, and it can use signals that have scattered back from the ground to estimate soil moisture.
      The soil moisture data could potentially inform agriculture and water managers about how croplands respond to heat waves or droughts, as well as how quickly they absorb water and then dry out following rain — information that could support irrigation planning.
      “Resource managers thinking about food security and where resources need to go are going to be able to use this sort of data to have a holistic view of their whole region,” said Rowena Lohman, an Earth sciences researcher at Cornell University in Ithaca, New York, and soil moisture lead on the NISAR science team.
      More About NISAR
      The NISAR satellite is a joint collaboration between NASA and ISRO and marks the first time the two agencies have cooperated on flight hardware for an Earth-observing mission. Managed by Caltech, NASA’s Jet Propulsion Laboratory leads the U.S. component of the project and provided the L-band SAR. NASA JPL also provided the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem. NASA’s Goddard Space Flight Center manages the Near Space Network, which will receive NISAR’s L-band data.
      The ISRO Space Applications Centre is providing the mission’s S-band SAR. The U R Rao Satellite Centre provided the spacecraft bus. The launch vehicle is from Vikram Sarabhai Space Centre, launch services are through Satish Dhawan Space Centre, and satellite mission operations are by the ISRO Telemetry Tracking and Command Network. The National Remote Sensing Centre is responsible for S-band data reception, operational products generation, and dissemination.
      To learn more about NISAR, visit:
      https://nisar.jpl.nasa.gov
      How NISAR Will See Earth What Sets NISAR Apart From Other Earth Satellites News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      2025-035
      Share
      Details
      Last Updated Mar 12, 2025 Related Terms
      NISAR (NASA-ISRO Synthetic Aperture Radar) Earth Earth Science Earth Science Division Explore More
      13 min read The NASA DC-8 Retires: Reflections on its Contributions to Earth System Science
      Introduction Since 1987, a highly modified McDonnell Douglas DC-8 aircraft has been a workhorse in…
      Article 23 hours ago 27 min read Summary of Special Engage Session on “Remote Sensing and the Future of Earth Observations”
      Introduction On October 16, 2024, a special session of the NASA Goddard Engage series took…
      Article 23 hours ago 2 min read How Do We Know the Earth Isn’t Flat? We Asked a NASA Expert: Episode 53
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s X-59 lights up the night sky with its unique Mach diamonds, also known as shock diamonds, during maximum afterburner testing at Lockheed Martin Skunk Works in Palmdale, California. The test demonstrated the engine’s ability to generate the thrust required for supersonic flight, advancing NASA’s Quesst mission.Credit: Lockheed Martin/Gary Tice NASA’s X-59 quiet supersonic research aircraft took another successful step toward flight with the conclusion of a series of engine performance tests.
      In preparation for the X-59’s planned first flight this year, NASA and Lockheed Martin successfully completed the aircraft’s engine run tests in January. The engine, a modified F414-GE-100 that powers the aircraft’s flight and integrated subsystems, performed to expectations during three increasingly complicated tests that ran from October through January at contractor Lockheed Martin’s Skunk Works facility in Palmdale, California.
      “We have successfully progressed through our engine ground tests as we planned,” said Raymond Castner, X-59 propulsion lead at NASA’s Glenn Research Center in Cleveland. “We had no major showstoppers. We were getting smooth and steady airflow as predicted from wind tunnel testing. We didn’t have any structural or excessive vibration issues. And parts of the engine and aircraft that needed cooling were getting it.”
      The tests began with seeing how the aircraft’s hydraulics, electrical, and environmental control systems performed when the engine was powered up but idling. The team then performed throttle checks, bringing the aircraft up to full power and firing its afterburner – an engine component that generates additional thrust – to maximum.
      In preparation for the X-59’s planned first flight this year, NASA and Lockheed Martin successfully completed the aircraft’s engine run tests in January. Testing included electrical, hydraulics, and environmental control systems.
      Credit: NASA/Lillianne Hammel  A third test, throttle snaps, involved moving the throttle swiftly back and forth to validate that the engine responds instantly. The engine produces as much as 22,000 pounds of thrust to achieve a desired cruising speed of Mach 1.4 (925 miles per hour) at an altitude of approximately 55,000 feet.
      The X-59’s engine, similar to those aboard the U.S. Navy’s F-18 Super Hornet, is mounted on top of the aircraft to reduce the level of noise reaching the ground. Many features of the X-59, including its 38-foot-long nose, are designed to lower the noise of a sonic boom to that of a mere “thump,” similar to the sound of a car door slamming nearby.
      Next steps before first flight will include evaluating the X-59 for potential electromagnetic interference effects, as well as “aluminum bird” testing, during which data will be fed to the aircraft under both normal and failure conditions. A series of taxi tests and other preparations will also take place before the first flight.
      The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to commercial supersonic flight over land by making sonic booms quieter.
      Explore More
      3 min read NASA Supports GoAERO University Awardees for Emergency Aircraft Prototyping
      Article 6 hours ago 2 min read Wind Over Its Wing: NASA’s X-66 Model Tests Airflow
      Article 6 days ago 9 min read Combustor Facilities
      Article 1 week ago

      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Jeremy Frank, left, and Caleb Adams, right, discuss software developed by NASA’s Distributed Spacecraft Autonomy project. The software runs on spacecraft computers, currently housed on a test rack at NASA’s Ames Research Center in California’s Silicon Valley, and depicts a spacecraft swarm virtually flying in lunar orbit to provide autonomous position navigation and timing services at the Moon. NASA/Brandon Torres Navarrete Talk amongst yourselves, get on the same page, and work together to get the job done! This “pep talk” roughly describes how new NASA technology works within satellite swarms. This technology, called Distributed Spacecraft Autonomy (DSA), allows individual spacecraft to make independent decisions while collaborating with each other to achieve common goals – all without human input. 
      NASA researchers have achieved multiple firsts in tests of such swarm technology as part of the agency’s DSA project. Managed at NASA’s Ames Research Center in California’s Silicon Valley, the DSA project develops software tools critical for future autonomous, distributed, and intelligent swarms that will need to interact with each other to achieve complex mission objectives. 
      “The Distributed Spacecraft Autonomy technology is very unique,” said Caleb Adams, DSA project manager at NASA Ames. “The software provides the satellite swarm with the science objective and the ‘smarts’ to get it done.”  
      What Are Distributed Space Missions? 
      Distributed space missions rely on interactions between multiple spacecraft to achieve mission goals. Such missions can deliver better data to researchers and ensure continuous availability of critical spacecraft systems.  
      Typically, spacecraft in swarms are individually commanded and controlled by mission operators on the ground. As the number of spacecraft and the complexity of their tasks increase to meet new constellation mission designs, “hands-on” management of individual spacecraft becomes unfeasible.  
      Distributing autonomy across a group of interacting spacecraft allows for all spacecraft in a swarm to make decisions and is resistant to individual spacecraft failures. 
      The DSA team advanced swarm technology through two main efforts: the development of software for small spacecraft that was demonstrated in space during NASA’s Starling mission, which involved four CubeSat satellites operating as a swarm to test autonomous collaboration and operation with minimal human operation, and a scalability study of a simulated spacecraft swarm in a virtual lunar orbit. 
      Experimenting With DSA in Low Earth Orbit
      The team gave Starling a challenging job: a fast-paced study of Earth’s ionosphere – where Earth’s atmosphere meets space – to show the swarm’s ability to collaborate and optimize science observations. The swarm decided what science to do on their own with no pre-programmed science observations from ground operators.  
      “We did not tell the spacecraft how to do their science,” said Adams. “The DSA team figured out what science Starling did only after the experiment was completed. That has never been done before and it’s very exciting!”  
      The accomplishments of DSA onboard Starling include the first fully distributed autonomous operation of multiple spacecraft, the first use of space-to-space communications to autonomously share status information between multiple spacecraft, the first demonstration of fully distributed reactive operations onboard multiple spacecraft, the first use of a general-purpose automated reasoning system onboard a spacecraft, and the first use of fully distributed automated planning onboard multiple spacecraft. 
      During the demonstration, which took place between August 2023 and May 2024, Starling’s swarm of spacecraft received GPS signals that pass through the ionosphere and reveal interesting – often fleeting – features for the swarm to focus on. Because the spacecraft constantly change position relative to each other, the GPS satellites, and the ionospheric environment, they needed to exchange information rapidly to stay on task.   
      Each Starling satellite analyzed and acted on its best results individually. When new information reached each spacecraft, new observation and action plans were analyzed, continuously enabling the swarm to adapt quickly to changing situations. 
      “Reaching the project goal of demonstrating the first fully autonomous distributed space mission was made possible by the DSA team’s development of distributed autonomy software that allowed the spacecraft to work together seamlessly,” Adams continued.
      Caleb Adams, Distributed Spacecraft Autonomy project manager, monitors testing alongside the test racks containing 100 spacecraft computers at NASA’s Ames Research Center in California’s Silicon Valley. The DSA project develops and demonstrates software to enhance multi-spacecraft mission adaptability, efficiently allocate tasks between spacecraft using ad-hoc networking, and enable human-swarm commanding of distributed space missions. NASA/Brandon Torres Navarrete Scaling Up Swarms in Virtual Lunar Orbit  
      The DSA ground-based scalability study was a simulation that placed virtual small spacecraft and rack-mounted small spacecraft flight computers in virtual lunar orbit. This simulation was designed to test the swarm’s ability to provide position, navigation, and timing services at the Moon. Similar to what the GPS system does on Earth, this technology could equip missions to the Moon with affordable navigation capabilities, and could one day help pinpoint the location of objects or astronauts on the lunar surface.   
      The DSA lunar Position, Navigation, and Timing study demonstrated scalability of the swarm in a simulated environment. Over a two-year period, the team ran close to one hundred tests of more complex coordination between multiple spacecraft computers in both low- and high-altitude lunar orbit and showed that a swarm of up to 60 spacecraft is feasible.  
      The team is further developing DSA’s capabilities to allow mission operators to interact with even larger swarms – hundreds of spacecraft – as a single entity. 
      Distributed Spacecraft Autonomy’s accomplishments mark a significant milestone in advancing autonomous distributed space systems that will make new types of science and exploration possible. 
      NASA Ames leads the Distributed Spacecraft Autonomy and Starling projects. NASA’s Game Changing Development program within the agency’s Space Technology Mission Directorate provides funding for the DSA experiment. NASA’s Small Spacecraft Technology program within the Space Technology Mission Directorate funds and manages the Starling mission and the DSA project. 
      Share
      Details
      Last Updated Feb 04, 2025 Related Terms
      Ames Research Center CubeSats Game Changing Development Program Small Spacecraft Technology Program Space Technology Mission Directorate Explore More
      2 min read NASA Awards Contract for Airborne Science Flight Services Support
      Article 23 hours ago 4 min read NASA Flight Tests Wildland Fire Tech Ahead of Demo
      Article 4 days ago 4 min read NASA Space Tech’s Favorite Place to Travel in 2025: The Moon!
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Space Technology Mission Directorate
      STMD Small Spacecraft Technology
      Starling
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of Beholding Black Hole Power with the Accretion Explorer Interferometer concept.NASA/Kimberly Weaver Kimberly Weaver
      NASA Goddard Space Flight Center
      Some of the most enigmatic objects in the Universe are giant supermassive black holes (SMBH). Yet after 30 years of study, we don’t know precisely how these objects produce their power. This requires observations at X-ray wavelengths. The state-of-the-art for X-ray images is Chandra (~0.5-1 arcsecond resolution) but this is insufficient to image regions near SMBH where the most energetic behavior occurs. The Accretion Explorer (AE) is a mission architecture that will shatter new ground by creating X-ray images at scientifically crucial energies of 0.7-1.2 keV, 1.5-2.5 keV, 6-7 keV, up to 6 orders of magnitude better than Chandra, and will offer imaging at 4-5 orders of magnitude better than JWST (IR) and HST(optical/UV). The specific X-ray energy bands we are proposing to cover contain vital X-ray line signatures that can distinguish between SMBH activity and stellar processes. The AE NIAC concept would be a game changer for NASA and astrophysics. X-ray interferometry will challenge and change the conversation around future mission possibilities for NASA’s flagships. It will also influence the Astrophysics 2030 Decadal Survey and will significantly contribute to our scientific knowledge base in astrophysics and other fields. AE has tremendous potential to generate enthusiasm for future missions and the potential to build advocacy to support it within NASA, society, and the aerospace community.
      Alternative approaches to ultra high-resolution X-ray imaging technology are not currently being funded. Our study will focus on a large free-flying X-ray interferometer. We will design a multiple spacecraft system that provides the architecture to align individual mirror pair baseline groupings provided by individual collector spacecraft, with the pointing precision to achieve micro-arcsecond resolution. Our study will assess the required pointing stability and determine optimal ways to nest and mount the collecting mirror flats within mirror modules. We will assess the required size for the detector array(s) to accommodate the wavelength coverage for detecting fringes, study how images will be created from fringes, and produce a simulated image from a design with accompanying optical element tolerance tables. We will document alternative approaches, how new factors substantially differentiate AE from prior efforts for X-ray interferometry, and identify technical hurdles.
      As a result of performing this study, there are notable engineering benefits that can contribute to space missions, even if the concept is shown to be infeasible. These include establishing how small baseline interferometers can be flown with less risk in terms of spacing and tethering mirror modules, studies of very high levels of pointing precision for space-based interferometers, and extreme stability on target. Producing a simulated image from this design with accompanying tolerance tables can inform other space-based interferometry designs.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated Jan 10, 2025 EditorLoura Hall Related Terms
      NASA Innovative Advanced Concepts (NIAC) Program NIAC Studies Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
  • Check out these Videos

×
×
  • Create New...