Members Can Post Anonymously On This Site
NASA’s X-59 Turns Up Power, Throttles Through Engine Tests
-
Similar Topics
-
By NASA
NICER (left) is shown mounted to the International Space Station, and LEXI (right) is shown attached to the top of Firefly Aerospace’s Blue Ghost in an artist’s rendering.NASA/Firefly Aerospace The International Space Station supports a wide range of scientific activities from looking out at our universe to breakthroughs in medical research, and is an active proving ground for technology for future Moon exploration missions and beyond. Firefly Aerospace’s Blue Ghost Mission-1 landed on the Moon on March 2, 2025, kicking off science and technology operations on the surface, including three experiments either tested on or enabled by space station research. These projects are helping scientists study space weather, navigation, and computer performance in space— knowledge crucial for future Moon missions.
One of the experiments, the Lunar Environment Heliospheric X-ray Imager (LEXI), is a small telescope designed to study the Earth’s magnetic environment and its interaction with the solar wind. Like the Neutron star Interior Composition Explorer (NICER) telescope mounted outside of the space station, LEXI observes X-ray sources. LEXI and NICER observed the same X-ray star to calibrate LEXI’s instrument and better analyze the X-rays emitted from Earth’s upper atmosphere, which is LEXI’s primary target. LEXI’s study of the interaction between the solar wind and Earth’s protective magnetosphere could help researchers develop methods to safeguard future space infrastructure and understand how this boundary responds to space weather.
Other researchers sent the Radiation Tolerant Computer System (RadPC) to the Moon to test how computers can recover from radiation-related faults. Before RadPC flew on Blue Ghost, researchers tested a radiation tolerant computer on the space station and developed an algorithm to detect potential hardware faults and prevent critical failures. RadPC aims to demonstrate computer resilience in the Moon’s radiation environment. The computer can gauge its own health in real time, and RadPC can identify a faulty location and repair it in the background as needed. Insights from this investigation could improve computer hardware for future deep-space missions.
In addition, the Lunar Global Navigation Satellite System (GNSS) Receiver Experiment (LuGRE) located on the lunar surface has officially received a GNSS signal at the farthest distance from Earth, the same signals that on Earth are used for navigation on everything from smartphones to airplanes. Aboard the International Space Station, Navigation and Communication Testbed (NAVCOM) has been testing a backup system to Earth’s GNSS using ground stations as an alternative method for lunar navigation where GNSS signals may have limitations. Bridging existing systems with emerging lunar-specific navigation solutions could help shape how spacecraft navigate the Moon on future missions.
The International Space Station serves as an important testbed for research conducted on missions like Blue Ghost and continues to lay the foundation for technologies of the future.
Keep Exploring Discover More Topics From NASA
International Space Station News
Space Station Research and Technology Tools and Information
Commercial Lunar Payload Services (CLPS)
The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping…
Space Station Research Results
View the full article
-
By NASA
5 min read
NASA’s Record-Shattering, Theory-Breaking MMS Mission Turns 10
Since its launch on March 12, 2015, NASA’s MMS, or Magnetospheric Multiscale, mission has been rewriting our understanding of a key physical process that is important across the universe, from black holes to the Sun to Earth’s protective magnetic field.
This process, called magnetic reconnection, occurs when magnetic field lines tangle and explosively realign, flinging away nearby particles. Around Earth, a single magnetic reconnection event can release as much energy in a couple of hours as the entire United States uses in a day.
Over the past 10 years, thousands of research papers with discoveries by MMS have enabled a wide range of technical and scientific advances, such as those about the conditions on the Sun that create space weather, which can impact technology and communications at Earth. It has also enabled insights for fusion energy technologies.
“The MMS mission has been a very important asset in NASA’s heliophysics fleet observatory,” said Guan Le, MMS mission lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It has utterly changed how we understand magnetic reconnection.”
An infographic noting the accomplishments of NASA’s Magnetospheric Multiscale mission after 10 years in space. NASA’s Goddard Space Flight Center/Kristen Perrin Studying magnetic reconnection is key to understanding where this energy goes and how it can affect us down on the ground.
“The MMS mission not only studies universal physical processes, but it also allows us to probe the mechanisms that connect big eruptions on the Sun to things we experience on Earth, such as auroras, geomagnetic storms, and even power outages in extreme cases,” said Kevin Genestreti, MMS science deputy principal investigator and lead scientist at Southwest Research Institute’s Space Sector in Durham, New Hampshire.
The Perfect Laboratory
Using four identical spacecraft, MMS studies magnetic reconnection while traveling in a long, oval-shaped orbit around Earth — a perfect laboratory for closely studying magnetic reconnection.
“You can measure reconnection in a laboratory, but the scales are so very small there that you can’t make the detailed measurements needed to really understand reconnection,” said Jim Burch, principal investigator for MMS at the Southwest Research Institute in San Antonio, Texas.
Magnetic reconnection primarily happens in two locations around Earth, one located on the side facing the Sun, and another behind Earth farther away from the Sun. In their orbit, the four MMS spacecraft repeatedly pass through these key locations.
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
This artist’s concept shows magnetic reconnection at Earth during a solar storm. NASA Goddard’s Conceptual Image Lab/Krystofer Kim Before MMS, scientists only had a limited understanding of magnetic reconnection. But by improving instrument measurement speeds tenfold, MMS has been able to dramatically reshape what we know about the process. To date, MMS data has led to over 1,500 published scientific articles.
“For example, it turned out that the basic theory of reconnection in turbulent regions was wrong because previous missions couldn’t make observations at the level MMS can,” Burch said. “We also found reconnection in a lot of places that weren’t predicted.”
Working out new and refined theories of magnetic reconnection was an integral part of the MMS mission from the outset.
“One of the truly groundbreaking findings from MMS is that the heart of reconnection has a well-ordered beat – even if everything around is turbulent,” said Michael Hesse, MMS theory and modeling lead at NASA’s Ames Research Center in California’s Silicon Valley. “This shows that precision measurement can decide between competing theories.”
Enabling Breakthroughs for Science and Scientists
The mission’s successes have also been a boon to young scientists, who are closely involved with the mission at all levels.
“In addition to its scientific achievements, it has also helped almost 50 students get doctorate degrees and enabled early career scientists to grow into leadership positions,” Le said.
To foster young scientists, MMS provides early career research grants to team members. The MMS team also created “Leads In-Training” roles to bring early career scientists to the table for big mission decisions and provide them the experience they need to move into leadership positions. The program has been so successful it is now required for all NASA Heliophysics missions.
Breaking Records
Beyond its scientific achievements, MMS also holds several records. Only months after launch, MMS received its first Guinness World Record for highest GPS fix at 44,000 miles above Earth. It would later shatter this record as it moved into a longer orbit, taking it 116,300 miles — halfway to the Moon — away from GPS transponders at Earth. GPS is designed to send signals down toward Earth, so using it in space, where signals are weak, is challenging. By using GPS at high altitudes, MMS has shown its potential for other applications.
“This GPS demonstration has been of great interest for the developers of the Artemis missions, which is testing GPS at lunar distances,” said Jim Clapsadle, MMS mission director at NASA Goddard.
The mission also holds the Guinness World Record for smallest satellite formation, with just 2.6 miles between spacecraft. Over the years, MMS’ four spacecraft have flown in lines and pyramid-shaped formations from 5 to 100 miles across to help scientists study magnetic reconnection on a range of scales. In that time, the spacecraft’s health has remained remarkably well.
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
This artist’s concept beauty pass shows the MMS spacecraft flying on Earth’s nightside, where MMS continues to study magnetic reconnection. NASA’s Goddard Space Flight Center Conceptual Image Lab “The hardware has proved very reliable, even now, 10 years into flight,” said Trevor Williams, MMS flight dynamics lead at NASA Goddard.
After launch, Williams and the flight operations team came up with more fuel-efficient ways to maneuver the spacecraft and keep them at their designated separations. As a result, the mission still has about a fourth of the fuel it launched with. This economy leaves enough fuel to continue operating the mission for decades. That’s good news to mission scientists who are eager to continue studying magnetic reconnection with MMS.
“We have thousands of magnetic reconnection events on the day side, but far fewer on the nightside,” Burch said. “But over the next three years we’ll be in a prime location to finish investigating nightside reconnection.”
By Mara Johnson-Groh
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact: Sarah Frazier
Share
Details
Last Updated Mar 12, 2025 Editor Miles Hatfield Contact Mara Johnson-Groh Location Goddard Space Flight Center Related Terms
Heliophysics Earth’s Magnetic Field Goddard Space Flight Center Science & Research Explore More
27 min read Summary of Special Engage Session on “Remote Sensing and the Future of Earth Observations”
Article
1 day ago
4 min read Discovery Alert: ‘Super-Earth’ Swings from Super-Heated to Super-Chill
Article
1 day ago
6 min read NASA’s Webb Peers Deeper into Mysterious Flame Nebula
Article
2 days ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By USH
EBANI stands for "Unidentified Anomalous Biological Entity," referring to a mysterious class of airborne phenomena that may be biological rather than mechanical in nature. These entities are often described as elongated, flexible, and tubular, moving through the sky in a serpentine or twisting manner.
They exhibit advanced flight capabilities, including high-speed travel, precise control, and even self-illumination. Some have been observed rendering themselves invisible, raising questions about their energy sources and possible technological origins.
Recent observations have revealed formations of translucent spheres in red, white, and blue, challenging conventional classifications of both biology and aerodynamics.
Some of these entities have a massive structure composed of thousands of clustered spheres. These entities appear to function as an aircraft carrier, releasing these smaller spheres into Earth's atmosphere for an unknown purpose.
While some researchers propose that EBANIs are natural organisms evolving in Earth's upper atmosphere under unfamiliar physical laws, others speculate they may be advanced artificial (eventually biological) constructs, potentially extraterrestrial probes or surveillance devices, given the presence of large structures expelling numerous smaller spheres.
Are they living UFOs, advanced biological organisms that function autonomously within the spheres, without the need for pilots?
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Sols 4471-4472: Marching Through the Canyon
NASA’s Mars rover Curiosity acquired this image using its Mast Camera (Mastcam), a close-up of the rover’s Alpha Particle X-Ray Spectrometer (APXS), an instrument that measures the abundance of chemical elements in rocks and soils on the Martian surface. Located on the turret at the end of Curiosity’s robotic arm, APXS is about the size of a cupcake, and this image shows the handwritten markings on the instrument’s sensor head. Curiosity captured this image on March 23, 2024 — sol 4134, or Martian day 4,134 of the Mars Science Laboratory mission — at 21:59:21 UTC. NASA/JPL-Caltech/MSSS Written by Scott VanBommel, Planetary Scientist at Washington University
Earth planning date: Monday, March 3, 2025
Curiosity continued steady progress through the upper sulfate unit and toward its next major science waypoint: the boxwork structures. Our rover is currently driving south through a local canyon between “Texoli” and “Gould Mesa.” This route may expose the same rock layers observed while climbing along the eastern margin of the Gediz Vallis channel, prompting several science activities in today’s plan. With winter still gripping Gale crater and limiting the power available for science, the team carefully balanced a number of priorities.
The weekend’s drive positioned the rover within reach of light-toned laminated bedrock and gray float rock. We kicked off our two-sol plan by removing dust on a representative bedrock target, “Ramona Trail,” before analyzing with APXS and imaging with MAHLI. ChemCam acquired compositional analyses on a laminated gray float rock, “Josephine Peak,” in addition to long-distance images of Texoli. Mastcam documented key features, capturing images of Josephine Peak, Texoli, “Gobblers Knob,” and “Fort Tejon.” In addition to these science-driven images, Mastcam also acquired two images of APXS before a planned drive of about 21 meters (about 69 feet).
As Curiosity continues toward the boxwork structures, the intricate patterns we observe will provide valuable clues about the history of Mars. While the Mastcam images acquired today of the APXS sensor head won’t directly contribute to the boxwork study, they capture a more human aspect of the mission. With each “APXS horseshoe” image, such as the one featured in this blog from sol 4134, hand-written markings on the APXS sensor head appear alongside Martian terrain, a reminder that this incredible journey is driven by the human touch of a dedicated team on Earth who designed, built, and continue to operate this remarkable spacecraft.
Share
Details
Last Updated Mar 05, 2025 Related Terms
Blogs Explore More
2 min read Sols 4468-4470: A Wintry Mix of Mars Science
Article
2 days ago
2 min read Smooshing for Science: A Flat-Out Success
Article
5 days ago
4 min read Sols 4466-4468: Heading Into the Small Canyon
Article
7 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
An artist’s concept depicts one of NASA’s Voyager probes. The twin spacecraft launched in 1977.NASA/JPL-Caltech The farthest-flung human-made objects will be able to take their science-gathering even farther, thanks to these energy-conserving measures.
Mission engineers at NASA’s Jet Propulsion Laboratory in Southern California turned off the cosmic ray subsystem experiment aboard Voyager 1 on Feb. 25 and will shut off Voyager 2’s low-energy charged particle instrument on March 24. Three science instruments will continue to operate on each spacecraft. The moves are part of an ongoing effort to manage the gradually diminishing power supply of the twin probes.
Launched in 1977, Voyagers 1 and 2 rely on a radioisotope power system that generates electricity from the heat of decaying plutonium. Both lose about 4 watts of power each year.
“The Voyagers have been deep space rock stars since launch, and we want to keep it that way as long as possible,” said Suzanne Dodd, Voyager project manager at JPL. “But electrical power is running low. If we don’t turn off an instrument on each Voyager now, they would probably have only a few more months of power before we would need to declare end of mission.”
The two spacecraft carry identical sets of 10 science instruments. Some of the instruments, geared toward collecting data during planetary flybys, were turned off after both spacecraft completed their exploration of the solar system’s gas giants.
The instruments that remained powered on well beyond the last planetary flyby were those the science team considered important for studying the solar system’s heliosphere, a protective bubble of solar wind and magnetic fields created by the Sun, and interstellar space, the region outside the heliosphere. Voyager 1 reached the edge of the heliosphere and the beginning of interstellar space in 2012; Voyager 2 reached the boundary in 2018. No other human-made spacecraft has operated in interstellar space.
Last October, to conserve energy, the project turned off Voyager 2’s plasma science instrument, which measures the amount of plasma — electrically charged atoms — and the direction it is flowing. The instrument had collected only limited data in recent years due to its orientation relative to the direction that plasma flows in interstellar space. Voyager 1’s plasma science instrument had been turned off years ago because of degraded performance.
Interstellar Science Legacy
The cosmic ray subsystem that was shut down on Voyager 1 last week is a suite of three telescopes designed to study cosmic rays, including protons from the galaxy and the Sun, by measuring their energy and flux. Data from those telescopes helped the Voyager science team determine when and where Voyager 1 exited the heliosphere.
Scheduled for deactivation later this month, Voyager 2’s low-energy charged particle instrument measures the various ions, electrons, and cosmic rays originating from our solar system and galaxy. The instrument consists of two subsystems: the low-energy particle telescope for broader energy measurements, and the low-energy magnetospheric particle analyzer for more focused magnetospheric studies.
Both systems use a rotating platform so that the field of view is 360 degrees, and the platform is powered by a stepper motor that provides a 15.7-watt pulse every 192 seconds. The motor was tested to 500,000 steps — enough to guarantee continuous operation through the mission’s encounters with Saturn, which occurred in August 1980 for Voyager 2. By the time it is deactivated on Voyager 2, the motor will have completed more than 8.5 million steps.
“The Voyager spacecraft have far surpassed their original mission to study the outer planets,” said Patrick Koehn, Voyager program scientist at NASA Headquarters in Washington. “Every bit of additional data we have gathered since then is not only valuable bonus science for heliophysics, but also a testament to the exemplary engineering that has gone into the Voyagers — starting nearly 50 years ago and continuing to this day.”
Addition Through Subtraction
Mission engineers have taken steps to avoid turning off science instruments for as long as possible because the science data collected by the twin Voyager probes is unique. With these two instruments turned off, the Voyagers should have enough power to operate for about a year before the team needs to shut off another instrument on both spacecraft.
In the meantime, Voyager 1 will continue to operate its magnetometer and plasma wave subsystem. The spacecraft’s low-energy charged particle instrument will operate through the remainder of 2025 but will be shut off next year.
Voyager 2 will continue to operate its magnetic field and plasma wave instruments for the foreseeable future. Its cosmic ray subsystem is scheduled to be shut off in 2026.
With the implementation of this power conservation plan, engineers believe the two probes could have enough electricity to continue operating with at least one science instrument into the 2030s. But they are also mindful that the Voyagers have been weathering deep space for 47 years and that unforeseen challenges could shorten that timeline.
Long Distance
Voyager 1 and Voyager 2 remain the most distant human-made objects ever built. Voyager 1 is more than 15 billion miles (25 billion kilometers) away. Voyager 2 is over 13 billion miles (21 billion kilometers) from Earth.
In fact, due to this distance, it takes over 23 hours to get a radio signal from Earth to Voyager 1, and 19½ hours to Voyager 2.
“Every minute of every day, the Voyagers explore a region where no spacecraft has gone before,” said Linda Spilker, Voyager project scientist at JPL. “That also means every day could be our last. But that day could also bring another interstellar revelation. So, we’re pulling out all the stops, doing what we can to make sure Voyagers 1 and 2 continue their trailblazing for the maximum time possible.”
For more information about NASA’s Voyager missions, visit:
https://science.nasa.gov/mission/voyager
News Media Contacts
DC Agle / Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
818-653-6297 / 626-808-2469
agle@jpl.nasa.gov / calla.e.cofield@jpl.nasa.gov
2025-032
Share
Details
Last Updated Mar 05, 2025 Related Terms
Jet Propulsion Laboratory Explore More
3 min read University High Knows the Answers at NASA JPL Regional Science Bowl
Article 2 days ago 3 min read NASA Uses New Technology to Understand California Wildfires
Article 5 days ago 6 min read NASA’s Europa Clipper Uses Mars to Go the Distance
Article 1 week ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.