Jump to content

6 Things to Know About SPHEREx, NASA’s Newest Space Telescope


Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA’s SPHEREx observatory undergoes testing
NASA’s SPHEREx observatory undergoes testing at BAE Systems in Boulder, Colorado, in August 2024. Launching no earlier than Feb. 27, 2025, the mission will make the first all-sky spectroscopic survey in the near-infrared, helping to answer some of the biggest questions in astrophysics.
BAE Systems/NASA/JPL-Caltech

Shaped like a megaphone, the upcoming mission will map the entire sky in infrared light to answer big questions about the universe.

Expected to launch no earlier than Thursday, Feb. 27, from Vandenberg Space Force Base in California, NASA’s SPHEREx space observatory will provide astronomers with a big-picture view of the cosmos like none before. Short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer, SPHEREx will map the entire celestial sky in 102 infrared colors, illuminating the origins of our universe, galaxies within it, and life’s key ingredients in our own galaxy. Here are six things to know about the mission.

1. The SPHEREx space telescope will shed light on a cosmic phenomenon called inflation.

In the first billionth of a trillionth of a trillionth of a second after the big bang, the universe increased in size by a trillion-trillionfold. Called inflation, this nearly instantaneous event took place almost 14 billion years ago, and its effects can be found today in the large-scale distribution of matter in the universe. By mapping the distribution of more than 450 million galaxies, SPHEREx will help scientists improve our understanding of the physics behind this extreme cosmic event.

Go behind the scenes with the team working on NASA’s SPHEREx space telescope as they talk through their rigorous testing process. NASA/JPL-Caltech/BAE Systems

2. The observatory will measure the collective glow from galaxies near and far.

Scientists have tried to estimate the total light output from all galaxies throughout cosmic history by observing individual galaxies and extrapolating to the trillions of galaxies in the universe. The SPHEREx space telescope will take a different approach and measure the total glow from all galaxies, including galaxies too small, too diffuse, or too distant for other telescopes to easily detect. Combining the measurement of this overall glow with other telescopes’ studies of individual galaxies will give scientists a more complete picture of all the major sources of light in the universe.

3. The mission will search the Milky Way galaxy for essential building blocks of life.

Life as we know it wouldn’t exist without basic ingredients such as water and carbon dioxide. The SPHEREx observatory is designed to find these molecules frozen in interstellar clouds of gas and dust, where stars and planets form. The mission will pinpoint the location and abundance of these icy compounds in our galaxy, giving researchers a better sense of their availability in the raw materials for newly forming planets.

Rho Ophiuchi dark cloud
Molecular clouds like this one, called Rho Ophiuchi, are collections of cold gas and dust in space where stars and planets can form. SPHEREx will survey such regions through-out the Milky Way galaxy to measure the abundance of water ice and other frozen mole-cules.
NASA/JPL-Caltech

4. It adds unique strengths to NASA’s fleet of space telescopes.

Space telescopes like NASA’s Hubble and Webb have zoomed in on many corners of the universe to show us planets, stars, and galaxies in high resolution. But some questions — like how much light do all the galaxies in the universe collectively emit? — can be answered only by looking at the big picture. To that end, the SPHEREx observatory will provide maps that encompass the entire sky. Objects of scientific interest identified by SPHEREx can then be studied in more detail by targeted telescopes like Hubble and Webb.

5. The SPHEREx observatory will make the most colorful all-sky map ever.

The SPHEREx observatory “sees” infrared light. Undetectable to the human eye, this range of wavelengths is ideal for studying stars and galaxies. Using a technique called spectroscopy, the telescope can split the light into its component colors (individual wavelengths), like a prism creates a rainbow from sunlight, in order to measure the distance to cosmic objects and learn about their composition. With SPHEREx’s spectroscopic map in hand, scientists will be able to detect evidence of chemical compounds, like water ice, in our galaxy. They’ll not only measure the total amount of light emitted by galaxies in our universe, but also discern how bright that total glow was at different points in cosmic history. And they’ll chart the 3D locations of hundreds of millions of galaxies to study how inflation influenced the large-scale structure of the universe today.

6. The spacecraft’s cone-shaped design helps it stay cold and see faint objects.

The mission’s infrared telescope and detectors need to operate at around minus 350 degrees Fahrenheit (about minus 210 degrees Celsius). This is partly to prevent them from generating their own infrared glow, which might overwhelm the faint light from cosmic sources. To keep things cold while also simplifying the spacecraft’s design and operational needs, SPHEREx relies on an entirely passive cooling system — no electricity or coolants are used during normal operations. Key to making this feat possible are three cone-shaped photon shields that protect the telescope from the heat of Earth and the Sun, as well as a mirrored structure beneath the shields to direct heat from the instrument out into space. Those photon shields give the spacecraft its distinctive outline.

More About SPHEREx

SPHEREx is managed by NASA’s Jet Propulsion Laboratory for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters in Washington. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA/IPAC Infrared Science Archive.

For more information about the SPHEREx mission visit:

https://www.jpl.nasa.gov/missions/spherex

News Media Contact

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov

2025-011

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      LIVE : Sun Live stream - close up Video Of The Sun / Lunt Telescope - Backyard Astronomy
    • By NASA
      Credit: NASA The Trump-Vance Administration released toplines of the President’s budget for Fiscal Year 2026 on Friday. The budget accelerates human space exploration of the Moon and Mars with a fiscally responsible portfolio of missions.
      “This proposal includes investments to simultaneously pursue exploration of the Moon and Mars while still prioritizing critical science and technology research,” said acting NASA Administrator Janet Petro. “I appreciate the President’s continued support for NASA’s mission and look forward to working closely with the administration and Congress to ensure we continue making progress toward achieving the impossible.”
      Increased commitment to human space exploration in pursuit of exploration of both the Moon and Mars. By allocating more than $7 billion for lunar exploration and introducing $1 billion in new investments for Mars-focused programs, the budget ensures America’s human space exploration efforts remain unparalleled, innovative, and efficient. Refocus science and space technology resources to efficiently execute high priority research. Consistent with the administration’s priority of returning to the Moon before China and putting an American on Mars, the budget will advance priority science and research missions and projects, ending financially unsustainable programs including Mars Sample Return. It emphasizes investments in transformative space technologies while responsibly shifting projects better suited for private sector leadership. Transition the Artemis campaign to a more sustainable, cost-effective approach to lunar exploration. The SLS (Space Launch System) rocket and Orion capsule will be retired after Artemis III, paving the way for more cost-effective, next-generation commercial systems that will support subsequent NASA lunar missions. The budget also ends the Gateway Program, with the opportunity to repurpose already produced components for use in other missions. International partners will be invited to join these renewed efforts, expanding opportunities for meaningful collaboration on the Moon and Mars. Continue the process of transitioning the International Space Station to commercial replacements in 2030, focusing onboard research on efforts critical to the exploration of the Moon and Mars. The budget reflects the upcoming transition to a more cost-effective, open commercial approach to human activities in low Earth orbit by reducing the space station’s crew size and onboard research, preparing for the safe decommissioning of the station and its replacement by commercial space stations. Work to minimize duplication of efforts and most efficiently steward the allocation of American taxpayer dollars. This budget ensures NASA’s topline enables a financially sustainable trajectory to complete groundbreaking research and execute the agency’s bold mission. Focus NASA’s resources on its core mission of space exploration. This budget ends climate-focused “green aviation” spending while protecting the development of technologies with air traffic control and other U.S. government and commercial applications, producing savings. This budget also will ensure continued elimination any funding toward misaligned DEIA initiatives, instead designating that money to missions capable of advancing NASA’s core mission. NASA will continue to inspire the next generation of explorers through exciting, ambitious space missions that demonstrate American leadership in space. NASA will coordinate closely with its partners to execute these priorities and investments as efficiently and effectively as possible.
      Building on the President’s promise to increase efficiency this budget pioneers a focused, innovative, and fiscally-responsible path to America’s next great era of human space exploration.
      Learn more about the President’s budget request for NASA:
      https://www.nasa.gov/budget
      -end-
      Bethany Stevens
      Headquarters, Washington
      771-216-2606
      bethany.c.stevens@nasa.gov
      Share
      Details
      Last Updated May 02, 2025 EditorJennifer M. DoorenLocationNASA Headquarters Related Terms
      Budget & Annual Reports View the full article
    • By Amazing Space
      LIVE : Sun Live stream - close up Video Of The Sun / Lunt Telescope - Backyard Astronomy
    • By European Space Agency
      Image: The Ocean and Land Colour Instrument on Copernicus Sentinel-3 captured this image of Earth’s biggest iceberg, A23a, on 5 April 2025. View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s SPHEREx mission is observing the entire sky in 102 infrared colors, or wavelengths of light not visible to the human eye. This image shows a section of sky in one wavelength (3.29 microns), revealing a cloud of dust made of a molecule similar to soot or smoke.NASA/JPL-Caltech This image from NASA’s SPHEREx shows the same region of space in a different infrared wavelength (0.98 microns), but the dust cloud is no longer visible. The molecules that compose the dust — polycyclic aromatic hydrocarbons — do not radiate light in this color.NASA/JPL-Caltech After weeks of preparation, the space observatory has begun its science mission, taking about 3,600 unique images per day to create a map of the cosmos like no other.
      Launched on March 11, NASA’s SPHEREx space observatory has spent the last six weeks undergoing checkouts, calibrations, and other activities to ensure it is working as it should. Now it’s mapping the entire sky — not just a large part of it — to chart the positions of hundreds of millions of galaxies in 3D to answer some big questions about the universe. On May 1, the spacecraft began regular science operations, which consist of taking about 3,600 images per day for the next two years to provide new insights about the origins of the universe, galaxies, and the ingredients for life in the Milky Way.
      This video shows SPHEREx’s field of view as it scans across one section of sky inside the Large Magellanic Cloud, with rainbow colors representing the infrared wavelengths the telescope’s detectors see. The view from one detector array moves from purple to green, followed by the second array’s view, which changes from yellow to red. The images are looped four times. NASA/JPL-Caltech “Thanks to the hard work of teams across NASA, industry, and academia that built this mission, SPHEREx is operating just as we’d expected and will produce maps of the full sky unlike any we’ve had before,” said Shawn Domagal-Goldman, acting director of the Astrophysics Division at NASA Headquarters in Washington. “This new observatory is adding to the suite of space-based astrophysics survey missions leading up to the launch of NASA’s Nancy Grace Roman Space Telescope. Together with these other missions, SPHEREx will play a key role in answering the big questions about the universe we tackle at NASA every day.”
      From its perch in Earth orbit, SPHEREx peers into the darkness, pointing away from the planet and the Sun. The observatory will complete more than 11,000 orbits over its 25 months of planned survey operations, circling Earth about 14½ times a day. It orbits Earth from north to south, passing over the poles, and each day it takes images along one circular strip of the sky. As the days pass and the planet moves around the Sun, SPHEREx’s field of view shifts as well so that after six months, the observatory will have looked out into space in every direction.
      When SPHEREx takes a picture of the sky, the light is sent to six detectors that each produces a unique image capturing different wavelengths of light. These groups of six images are called an exposure, and SPHEREx takes about 600 exposures per day. When it’s done with one exposure, the whole observatory shifts position — the mirrors and detectors don’t move as they do on some other telescopes. Rather than using thrusters, SPHEREx relies on a system of reaction wheels, which spin inside the spacecraft to control its orientation.
      Hundreds of thousands of SPHEREx’s images will be digitally woven together to create four all-sky maps in two years. By mapping the entire sky, the mission will provide new insights about what happened in the first fraction of a second after the big bang. In that brief instant, an event called cosmic inflation caused the universe to expand a trillion-trillionfold.
      “We’re going to study what happened on the smallest size scales in the universe’s earliest moments by looking at the modern universe on the largest scales,” said Jim Fanson, the mission’s project manager at NASA’s Jet Propulsion Laboratory in Southern California. “I think there’s a poetic arc to that.”
      Cosmic inflation subtly influenced the distribution of matter in the universe, and clues about how such an event could happen are written into the positions of galaxies across the universe. When cosmic inflation began, the universe was smaller than the size of an atom, but the properties of that early universe were stretched out and influence what we see today. No other known event or process involves the amount of energy that would have been required to drive cosmic inflation, so studying it presents a unique opportunity to understand more deeply how our universe works.
      “Some of us have been working toward this goal for 12 years,” said Jamie Bock, the mission’s principal investigator at Caltech and JPL. “The performance of the instrument is as good as we hoped. That means we’re going to be able to do all the amazing science we planned on and perhaps even get some unexpected discoveries.”
      Color Field
      The SPHEREx observatory won’t be the first to map the entire sky, but it will be the first to do so in so many colors. It observes 102 wavelengths, or colors, of infrared light, which are undetectable to the human eye. Through a technique called spectroscopy, the telescope separates the light into wavelengths — much like a prism creates a rainbow from sunlight — revealing all kinds of information about cosmic sources.
      For example, spectroscopy can be harnessed to determine the distance to a faraway galaxy, information that can be used to turn a 2D map of those galaxies into a 3D one. The technique will also enable the mission to measure the collective glow from all the galaxies that ever existed and see how that glow has changed over cosmic time.
      And spectroscopy can reveal the composition of objects. Using this capability, the mission is searching for water and other key ingredients for life in these systems in our galaxy. It’s thought that the water in Earth’s oceans originated as frozen water molecules attached to dust in the interstellar cloud where the Sun formed.
      The SPHEREx mission will make over 9 million observations of interstellar clouds in the Milky Way, mapping these materials across the galaxy and helping scientists understand how different conditions can affect the chemistry that produced many of the compounds found on Earth today.
      More About SPHEREx
      The SPHEREx mission is managed by JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems in Boulder, Colorado, built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech in Pasadena managed and integrated the instrument. The mission’s principal investigator is based at Caltech with a joint JPL appointment. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
      For more about SPHEREx, visit:
      https://science.nasa.gov/mission/spherex/
      News Media Contact
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      2025-063
      Share
      Details
      Last Updated May 01, 2025 Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Exoplanets Galaxies Jet Propulsion Laboratory The Search for Life The Universe Explore More
      4 min read NASA’s Chandra Diagnoses Cause of Fracture in Galactic “Bone”
      Article 3 hours ago 3 min read The Universe’s Brightest Lights Have Some Dark Origins
      Did you know some of the brightest sources of light in the sky come from…
      Article 1 day ago 8 min read How to Contribute to Citizen Science with NASA
      A cell phone, a computer—and your curiosity—is all you need to become a NASA citizen…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...