Jump to content

6 Things to Know About SPHEREx, NASA’s Newest Space Telescope


Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA’s SPHEREx observatory undergoes testing
NASA’s SPHEREx observatory undergoes testing at BAE Systems in Boulder, Colorado, in August 2024. Launching no earlier than Feb. 27, 2025, the mission will make the first all-sky spectroscopic survey in the near-infrared, helping to answer some of the biggest questions in astrophysics.
BAE Systems/NASA/JPL-Caltech

Shaped like a megaphone, the upcoming mission will map the entire sky in infrared light to answer big questions about the universe.

Expected to launch no earlier than Thursday, Feb. 27, from Vandenberg Space Force Base in California, NASA’s SPHEREx space observatory will provide astronomers with a big-picture view of the cosmos like none before. Short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer, SPHEREx will map the entire celestial sky in 102 infrared colors, illuminating the origins of our universe, galaxies within it, and life’s key ingredients in our own galaxy. Here are six things to know about the mission.

1. The SPHEREx space telescope will shed light on a cosmic phenomenon called inflation.

In the first billionth of a trillionth of a trillionth of a second after the big bang, the universe increased in size by a trillion-trillionfold. Called inflation, this nearly instantaneous event took place almost 14 billion years ago, and its effects can be found today in the large-scale distribution of matter in the universe. By mapping the distribution of more than 450 million galaxies, SPHEREx will help scientists improve our understanding of the physics behind this extreme cosmic event.

Go behind the scenes with the team working on NASA’s SPHEREx space telescope as they talk through their rigorous testing process. NASA/JPL-Caltech/BAE Systems

2. The observatory will measure the collective glow from galaxies near and far.

Scientists have tried to estimate the total light output from all galaxies throughout cosmic history by observing individual galaxies and extrapolating to the trillions of galaxies in the universe. The SPHEREx space telescope will take a different approach and measure the total glow from all galaxies, including galaxies too small, too diffuse, or too distant for other telescopes to easily detect. Combining the measurement of this overall glow with other telescopes’ studies of individual galaxies will give scientists a more complete picture of all the major sources of light in the universe.

3. The mission will search the Milky Way galaxy for essential building blocks of life.

Life as we know it wouldn’t exist without basic ingredients such as water and carbon dioxide. The SPHEREx observatory is designed to find these molecules frozen in interstellar clouds of gas and dust, where stars and planets form. The mission will pinpoint the location and abundance of these icy compounds in our galaxy, giving researchers a better sense of their availability in the raw materials for newly forming planets.

Rho Ophiuchi dark cloud
Molecular clouds like this one, called Rho Ophiuchi, are collections of cold gas and dust in space where stars and planets can form. SPHEREx will survey such regions through-out the Milky Way galaxy to measure the abundance of water ice and other frozen mole-cules.
NASA/JPL-Caltech

4. It adds unique strengths to NASA’s fleet of space telescopes.

Space telescopes like NASA’s Hubble and Webb have zoomed in on many corners of the universe to show us planets, stars, and galaxies in high resolution. But some questions — like how much light do all the galaxies in the universe collectively emit? — can be answered only by looking at the big picture. To that end, the SPHEREx observatory will provide maps that encompass the entire sky. Objects of scientific interest identified by SPHEREx can then be studied in more detail by targeted telescopes like Hubble and Webb.

5. The SPHEREx observatory will make the most colorful all-sky map ever.

The SPHEREx observatory “sees” infrared light. Undetectable to the human eye, this range of wavelengths is ideal for studying stars and galaxies. Using a technique called spectroscopy, the telescope can split the light into its component colors (individual wavelengths), like a prism creates a rainbow from sunlight, in order to measure the distance to cosmic objects and learn about their composition. With SPHEREx’s spectroscopic map in hand, scientists will be able to detect evidence of chemical compounds, like water ice, in our galaxy. They’ll not only measure the total amount of light emitted by galaxies in our universe, but also discern how bright that total glow was at different points in cosmic history. And they’ll chart the 3D locations of hundreds of millions of galaxies to study how inflation influenced the large-scale structure of the universe today.

6. The spacecraft’s cone-shaped design helps it stay cold and see faint objects.

The mission’s infrared telescope and detectors need to operate at around minus 350 degrees Fahrenheit (about minus 210 degrees Celsius). This is partly to prevent them from generating their own infrared glow, which might overwhelm the faint light from cosmic sources. To keep things cold while also simplifying the spacecraft’s design and operational needs, SPHEREx relies on an entirely passive cooling system — no electricity or coolants are used during normal operations. Key to making this feat possible are three cone-shaped photon shields that protect the telescope from the heat of Earth and the Sun, as well as a mirrored structure beneath the shields to direct heat from the instrument out into space. Those photon shields give the spacecraft its distinctive outline.

More About SPHEREx

SPHEREx is managed by NASA’s Jet Propulsion Laboratory for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters in Washington. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA/IPAC Infrared Science Archive.

For more information about the SPHEREx mission visit:

https://www.jpl.nasa.gov/missions/spherex

News Media Contact

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov

2025-011

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronaut Anil Menon poses for a portrait at NASA’s Johnson Space Center in Houston. Credit: NASA/Josh Valcarcel NASA astronaut Anil Menon will embark on his first mission to the International Space Station, serving as a flight engineer and Expedition 75 crew member.
      Menon will launch aboard the Roscosmos Soyuz MS-29 spacecraft in June 2026, accompanied by Roscosmos cosmonauts Pyotr Dubrov and Anna Kikina. After launching from the Baikonur Cosmodrome in Kazakhstan, the trio will spend approximately eight months aboard the orbiting laboratory.
      During his expedition, Menon will conduct scientific investigations and technology demonstrations to help prepare humans for future space missions and benefit humanity.
      Selected as a NASA astronaut in 2021, Menon graduated with the 23rd astronaut class in 2024. After completing initial astronaut candidate training, he began preparing for his first space station flight assignment.
      Menon was born and raised in Minneapolis and is an emergency medicine physician, mechanical engineer, and colonel in the United States Space Force. He holds a bachelor’s degree in neurobiology from Harvard University in Cambridge, Massachusetts, a master’s degree in mechanical engineering, and a medical degree from Stanford University in California. Menon completed his emergency medicine and aerospace medicine residency at Stanford and the University of Texas Medical Branch in Galveston.
      In his spare time, he still practices emergency medicine at Memorial Hermann’s Texas Medical Center and teaches residents at the University of Texas’ residency program. Menon served as SpaceX’s first flight surgeon, helping to launch the first crewed Dragon spacecraft on NASA’s SpaceX Demo-2 mission and building SpaceX’s medical organization to support humans on future missions. He served as a crew flight surgeon for both SpaceX flights and NASA expeditions aboard the space station.
      For nearly 25 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and conducting critical research for the benefit of humanity and our home planet. Space station research supports the future of human spaceflight as NASA looks toward deep space missions to the Moon under the Artemis campaign and in preparation for future human missions to Mars, as well as expanding commercial opportunities in low Earth orbit and beyond. 
      Learn more about International Space Station at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

      Shaneequa Vereen
      Johnson Space Center, Houston
      281-483-5111
      shaneequa.y.vereen@nasa.gov   
      Share
      Details
      Last Updated Jul 01, 2025 LocationNASA Headquarters Related Terms
      Astronauts Humans in Space International Space Station (ISS) ISS Research View the full article
    • By Space Force
      Developed to drive continuous improvement, the Civilian Human Capital Evaluation and Accountability Program leverages data to assess and enhance the effectiveness, efficiency and compliance of human capital programs across the force.
      View the full article
    • By NASA
      The four crew members of NASA’s SpaceX Crew-11 mission to the International Space Station train inside a SpaceX Dragon spacecraft in Hawthorne, California. From left to right: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA astronaut Kimiya Yui.Credit: SpaceX Media accreditation is open for the launch of NASA’s 11th rotational mission of a SpaceX Falcon 9 rocket and Dragon spacecraft carrying astronauts to the International Space Station for a science expedition. NASA’s SpaceX Crew-11 mission is targeted to launch in the late July/early August timeframe from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.
      The mission includes NASA astronauts Zena Cardman, serving as commander; Mike Fincke, pilot; JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, mission specialist; and Roscosmos cosmonaut Oleg Platonov, mission specialist. This is the first spaceflight for Cardman and Platonov, the fourth trip for Fincke, and the second for Yui, to the orbiting laboratory.
      Media accreditation deadlines for the Crew-11 launch as part of NASA’s Commercial Crew Program are as follows:
      International media without U.S. citizenship must apply by 11:59 p.m. EDT on Sunday, July 6. U.S. media and U.S. citizens representing international media organizations must apply by 11:59 p.m. on Monday, July 14. All accreditation requests must be submitted online at:
      https://media.ksc.nasa.gov
      NASA’s media accreditation policy is online. For questions about accreditation or special logistical requests, email: ksc-media-accreditat@mail.nasa.gov. Requests for space for satellite trucks, tents, or electrical connections are due by Monday, July 14.
      For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.
      For launch coverage and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Steve Siceloff / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jul 01, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew Commercial Space Humans in Space International Space Station (ISS) ISS Research Space Operations Mission Directorate View the full article
    • By Amazing Space
      LIVE NOW: 1st July Sun Close up Views/ Backyard Astronomy with Lunt Telescope
    • By Amazing Space
      LIVE - Earth From Space Views - Seen From The ISS
  • Check out these Videos

×
×
  • Create New...