Jump to content

Recommended Posts

  • Publishers
Posted
A scientist in a white coat, mask, hair net, and purple gloves holds up a clear vial with a black substance inside near the camera.
In this video frame, Jason Dworkin holds up a vial that contains part of the sample from asteroid Bennu delivered to Earth by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) mission in 2023. Dworkin is the mission’s project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
Credit: NASA/James Tralie

Studies of rock and dust from asteroid Bennu delivered to Earth by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification and Security–Regolith Explorer) spacecraft have revealed molecules that, on our planet, are key to life, as well as a history of saltwater that could have served as the “broth” for these compounds to interact and combine.

The findings do not show evidence for life itself, but they do suggest the conditions necessary for the emergence of life were widespread across the early solar system, increasing the odds life could have formed on other planets and moons.

“NASA’s OSIRIS-REx mission already is rewriting the textbook on what we understand about the beginnings of our solar system,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Asteroids provide a time capsule into our home planet’s history, and Bennu’s samples are pivotal in our understanding of what ingredients in our solar system existed before life started on Earth.”

In research papers published Wednesday in the journals Nature and Nature Astronomy, scientists from NASA and other institutions shared results of the first in-depth analyses of the minerals and molecules in the Bennu samples, which OSIRIS-REx delivered to Earth in 2023.

Detailed in the Nature Astronomy paper, among the most compelling detections were amino acids – 14 of the 20 that life on Earth uses to make proteins – and all five nucleobases that life on Earth uses to store and transmit genetic instructions in more complex terrestrial biomolecules, such as DNA and RNA, including how to arrange amino acids into proteins.

Scientists also described exceptionally high abundances of ammonia in the Bennu samples. Ammonia is important to biology because it can react with formaldehyde, which also was detected in the samples, to form complex molecules, such as amino acids – given the right conditions. When amino acids link up into long chains, they make proteins, which go on to power nearly every biological function.

These building blocks for life detected in the Bennu samples have been found before in extraterrestrial rocks. However, identifying them in a pristine sample collected in space supports the idea that objects that formed far from the Sun could have been an important source of the raw precursor ingredients for life throughout the solar system.

“The clues we’re looking for are so minuscule and so easily destroyed or altered from exposure to Earth’s environment,” said Danny Glavin, a senior sample scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and co-lead author of the Nature Astronomy paper. “That’s why some of these new discoveries would not be possible without a sample-return mission, meticulous contamination-control measures, and careful curation and storage of this precious material from Bennu.”

While Glavin’s team analyzed the Bennu samples for hints of life-related compounds, their colleagues, led by Tim McCoy, curator of meteorites at the Smithsonian’s National Museum of Natural History in Washington, and Sara Russell, cosmic mineralogist at the Natural History Museum in London, looked for clues to the environment these molecules would have formed. Reporting in the journal Nature, scientists further describe evidence of an ancient environment well-suited to kickstart the chemistry of life.

Ranging from calcite to halite and sylvite, scientists identified traces of 11 minerals in the Bennu sample that form as water containing dissolved salts evaporates over long periods of time, leaving behind the salts as solid crystals.

Similar brines have been detected or suggested across the solar system, including at the dwarf planet Ceres and Saturn’s moon Enceladus.

Although scientists have previously detected several evaporites in meteorites that fall to Earth’s surface, they have never seen a complete set that preserves an evaporation process that could have lasted thousands of years or more. Some minerals found in Bennu, such as trona, were discovered for the first time in extraterrestrial samples.

“These papers really go hand in hand in trying to explain how life’s ingredients actually came together to make what we see on this aqueously altered asteroid,” said McCoy.

For all the answers the Bennu sample has provided, several questions remain. Many amino acids can be created in two mirror-image versions, like a pair of left and right hands. Life on Earth almost exclusively produces the left-handed variety, but the Bennu samples contain an equal mixture of both. This means that on early Earth, amino acids may have started out in an equal mixture, as well. The reason life “turned left” instead of right remains a mystery.

“OSIRIS-REx has been a highly successful mission,” said Jason Dworkin, OSIRIS-REx project scientist at NASA Goddard and co-lead author on the Nature Astronomy paper. “Data from OSIRIS-REx adds major brushstrokes to a picture of a solar system teeming with the potential for life. Why we, so far, only see life on Earth and not elsewhere, that’s the truly tantalizing question.”

NASA Goddard provided overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. The university leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provided flight operations. NASA Goddard and KinetX Aerospace were responsible for navigating the OSIRIS-REx spacecraft. Curation for OSIRIS-REx takes place at NASA’s Johnson Space Center in Houston. International partnerships on this mission include the OSIRIS-REx Laser Altimeter instrument from CSA (Canadian Space Agency) and asteroid sample science collaboration with JAXA’s (Japan Aerospace Exploration Agency) Hayabusa2 mission. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.

For more information on the OSIRIS-REx mission, visit:

https://www.nasa.gov/osiris-rex

Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

Rani Gran
Goddard Space Flight Center, Greenbelt, Maryland
301-286-2483
rani.c.gran@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      The European Space Agency (ESA) has endorsed the United Nations' (UN) designation of 2029 as the International Year of Asteroid Awareness and Planetary Defence.
      The initiative will foster international collaboration in the field of planetary defence and educate the public on the risks and opportunities associated with near-Earth asteroids.
      View the full article
    • By NASA
      NASA’s UAVSAR airborne radar instrument captured data in fall 2024 showing the mo-tion of landslides on the Palos Verdes Peninsula following record-breaking rainfall in Southern California in 2023 and another heavy-precipitation winter in 2024. Darker red indicates faster motion.NASA Earth Observatory Analysis of data from NASA radar aboard an airplane shows that the decades-old active landslide area on the Palos Verdes Peninsula has expanded.
      Researchers at NASA’s Jet Propulsion Laboratory in Southern California used data from an airborne radar to measure the movement of the slow-moving landslides on the Palos Verdes Peninsula in Los Angeles County. The analysis determined that, during a four-week period in the fall of 2024, land in the residential area slid toward the ocean by as much as 4 inches (10 centimeters) per week.
      Portions of the peninsula, which juts into the Pacific Ocean just south of the city of Los Angeles, are part of an ancient complex of landslides and has been moving for at least the past six decades, affecting hundreds of buildings in local communities. The motion accelerated, and the active area expanded following record-breaking rainfall in Southern California in 2023 and heavy precipitation in early 2024.
      To create this visualization, the Advanced Rapid Imaging and Analysis (ARIA) team used data from four flights of NASA’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) that took place between Sept. 18 and Oct. 17. The UAVSAR instrument was mounted to a Gulfstream III jet flown out of NASA’s Armstrong Flight Research Center in Edwards, California, and the four flights were planned to estimate the speed and direction of the landslides in three dimensions.
      In the image above, colors indicate how fast parts of the landslide complex were moving in late September and October, with the darkest reds indicating the highest speeds. The arrows represent the direction of horizontal motion. The white solid lines are the boundaries of the active landslide area as defined in 2007 by the California Geological Survey.
      “In effect, we’re seeing that the footprint of land experiencing significant impacts has expanded, and the speed is more than enough to put human life and infrastructure at risk,” said Alexander Handwerger, the JPL landslide scientist who performed the analysis.
      The insights from the UAVSAR flights were part of a package of analyses by the ARIA team that also used data from ESA’s (the European Space Agency’s) Copernicus Sentinel-1A/B satellites. The analyses were provided to California officials to support the state’s response to the landslides and made available to the public at NASA’s Disaster Mapping Portal.
      Handwerger is also the principal investigator for NASA’s upcoming Landslide Climate Change Experiment, which will use airborne radar to study how extreme wet or dry precipitation patterns influence landslides. The investigation will include flights over coastal slopes spanning the California coastline.
      More About ARIA, UAVSAR
      The ARIA mission is a collaboration between JPL and Caltech, which manages JPL for NASA, to leverage radar and optical remote-sensing, GPS, and seismic observations for science as well as to aid in disaster response. The project investigates the processes and impacts of earthquakes, volcanoes, landslides, fires, subsurface fluid movement, and other natural hazards.
      UAVSAR has flown thousands of radar missions around the world since 2007, studying phenomena such as glaciers and ice sheets, vegetation in ecosystems, and natural hazards like earthquakes, volcanoes, and landslides.
      News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      2025-012
      Share
      Details
      Last Updated Jan 31, 2025 Related Terms
      Earth Science Airborne Science Armstrong Flight Research Center Earth Earth Science Division Explore More
      3 min read NASA Tests Air Traffic Surveillance Technology Using Its Pilatus PC-12 Aircraft
      Article 1 week ago 5 min read How New NASA, India Earth Satellite NISAR Will See Earth
      Article 1 week ago 6 min read NASA International Space Apps Challenge Announces 2024 Global Winners
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA Science Live: Asteroid Bennu Originated from World with Ingredients and Conditions for Life
    • By NASA
      En este fotograma de vídeo, Jason Dworkin sostiene un vial que contiene parte de la muestra del asteroide Bennu que la misión OSIRIS-REx (Orígenes, Interpretación Espectral, Identificación de Recursos y Seguridad – Explorador de Regolito) de la NASA trajo a la Tierra en 2023. Dworkin es el científico del proyecto de la misión en el Centro Goddard de Vuelos Espaciales de la NASA en Greenbelt, Maryland.Credit: NASA/James Tralie Read this release in English here.
      Los estudios de las rocas y el polvo del asteroide Bennu que fueron traídos a la Tierra por la nave espacial de la misión Orígenes, Interpretación Espectral, Identificación de Recursos y Seguridad – Explorador de Regolito (OSIRIS-REx, por sus siglas en inglés) de la NASA han revelado moléculas que, en nuestro planeta, son clave para la vida, así como un historial de la existencia de agua salada que podría haber servido como “caldo” para que estos compuestos interactuaran y se combinaran.


      Los hallazgos no muestran evidencia de vida, pero sí sugieren que las condiciones necesarias para el surgimiento de la vida estaban muy extendidas en todo el sistema solar primitivo, lo que aumentaría las probabilidades de que la vida pudiera haberse formado en otros planetas y lunas.


      “La misión OSIRIS-REx de la NASA ya está reescribiendo los libros de texto sobre lo que entendemos acerca de los comienzos de nuestro sistema solar”, dijo Nicky Fox, administradora asociada en la Dirección de Misiones Científicas en la sede de la NASA en Washington. “Los asteroides proporcionan una cápsula del tiempo sobre la historia de nuestro planeta natal, y las muestras de Bennu son fundamentales para nuestra comprensión de qué ingredientes en nuestro sistema solar existían antes de que comenzara la vida en la Tierra”.
      En artículos sobre esta investigación científica publicados el miércoles en las revistas Nature y Nature Astronomy, científicos de la NASA y otras instituciones compartieron los resultados de los primeros análisis en profundidad de los minerales y moléculas hallados en las muestras de Bennu, las cuales fueron transportadas a la Tierra por la nave espacial OSIRIS-REx en 2023.
      Como se detalla en el artículo de Nature Astronomy, entre las detecciones más significativas se encontraron aminoácidos (14 de los 20 que la vida en la Tierra utiliza para producir proteínas) y las cinco nucleobases (bases nitrogenadas) que la vida en la Tierra utiliza para almacenar y transmitir instrucciones genéticas en moléculas biológicas terrestres más complejas como el ADN y el ARN, incluyendo la forma de organizar los aminoácidos para formar proteínas.


      Los científicos también describieron abundancias excepcionalmente altas de amoníaco en las muestras de Bennu. El amoníaco es importante para la biología porque, en las condiciones adecuadas, puede reaccionar con el formaldehído, el cual también fue detectado en las muestras, para formar moléculas complejas como los aminoácidos. Cuando los aminoácidos se unen en cadenas largas, forman proteínas, las cuales impulsan casi todas las funciones biológicas.
      Estos componentes básicos para la vida detectados en las muestras de Bennu han sido hallados antes en rocas extraterrestres. Sin embargo, identificarlos en una muestra impoluta obtenida en el espacio respalda la idea de que los objetos que se formaron lejos del Sol podrían haber sido una fuente importante de los ingredientes precursores básicos para la vida en todo el sistema solar.


      “Las pistas que estamos buscando son muy minúsculas y se destruyen o alteran con mucha facilidad al exponerse al ambiente de la Tierra”, dijo Danny Glavin, científico principal de muestras en el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland, y coautor principal del artículo publicado en Nature Astronomy. “Es por eso que algunos de estos nuevos descubrimientos no serían posibles sin una misión de retorno que trajera las muestras, sin medidas meticulosas de control de la contaminación y sin una cuidadosa curaduría y almacenamiento de este precioso material proveniente de Bennu”.


      Mientras que el equipo de Glavin analizó las muestras de Bennu en busca de indicios de compuestos relacionados con la vida, sus colegas, dirigidos por Tim McCoy, quien es curador de meteoritos en el Museo Nacional de Historia Natural del Instituto Smithsonian en Washington, y Sara Russell, mineralogista cósmica en el Museo de Historia Natural de Londres, buscaron pistas sobre el entorno en el que se habrían formado estas moléculas. En un informe publicado en la revista Nature, los científicos describen, además, la evidencia que hallaron de un antiguo entorno propicio para poner en marcha la química de la vida.


      Desde calcita hasta halita y silvita, los científicos identificaron en la muestra de Bennu rastros de 11 minerales que se forman a medida que el agua que contiene las sales disueltas en ella se va evaporando a lo largo de extensos períodos de tiempo, dejando atrás las sales en forma de cristales sólidos.


      Se han detectado o ha habido indicaciones de la existencia de salmueras similares en todo el sistema solar, incluso en el planeta enano Ceres y la luna Encélado de Saturno.
      Aunque los científicos han detectado previamente varias evaporitas en meteoritos que caen a la superficie de la Tierra, nunca han visto un conjunto completo de sales sedimentadas que conservara un proceso de evaporación que podría haber durado miles de años o más. Algunos minerales presentes en Bennu, como la trona, fueron descubiertos por primera vez en muestras extraterrestres.


      “Estos artículos científicos realmente se complementan para tratar de explicar cómo los ingredientes de la vida se unieron para hacer lo que vemos en este asteroide alterado acuosamente”, dijo McCoy.
      A pesar de todas las respuestas que ha proporcionado la muestra de Bennu, quedan varias preguntas. Muchos aminoácidos se pueden producir en dos versiones de imagen especular, como un par de manos izquierda y derecha. La vida en la Tierra produce casi exclusivamente la variedad levógira (que va hacia la izquierda, o en sentido antihorario), pero las muestras de Bennu contienen una mezcla igual de ambas. Esto significa que, en la Tierra primitiva, los aminoácidos también podrían haber comenzado en una mezcla de iguales proporciones. La razón por la que la vida “giró hacia la izquierda” en lugar de hacia la derecha sigue siendo un misterio.
      “OSIRIS-REx ha sido una misión muy exitosa”, dijo Jason Dworkin, científico que trabaja en el proyecto OSIRIS-REx desde el centro Goddard de NASA y es coautor principal del artículo de Nature Astronomy. “Los datos de OSIRIS-REx añaden grandes pinceladas a una imagen de un sistema solar rebosante de potencial para la vida. ¿Por qué nosotros, hasta ahora, solo vemos vida en la Tierra y no en otros lugares? Esa es la pregunta verdaderamente cautivante”.


      El centro Goddard de la NASA proporcionó la gestión general de la misión, la ingeniería de sistemas y la garantía y seguridad de la misión OSIRIS-REx. Dante Lauretta, de la Universidad de Arizona en Tucson, es el investigador principal. Esa universidad dirige el equipo científico y la planificación y el procesamiento de datos de las observaciones científicas de la misión. Lockheed Martin Space en Littleton, Colorado, construyó la nave espacial y proporcionó las operaciones de vuelo. El centro Goddard y KinetX Aerospace fueron responsables de la navegación de la nave espacial OSIRIS-REx. La curaduría de OSIRIS-REx es llevada a cabo en el Centro Espacial Johnson de la NASA en Houston. Las asociaciones internacionales para esta misión incluyen el instrumento de altímetro láser de OSIRIS-REx proveniente de la CSA (Agencia Espacial Canadiense) y la colaboración científica para las muestras del asteroide con la misión Hayabusa2 de la JAXA (Agencia Japonesa de Exploración Aeroespacial). OSIRIS-REx es la tercera misión del Programa Nuevas Fronteras de la NASA, el cual es gestionado por el Centro de Vuelo Espacial Marshall de la agencia en Huntsville, Alabama, para la Dirección de Misiones Científicas de la agencia en Washington.


      Para obtener más información sobre la misión OSIRIS-REx, visita el sitio web (en inglés):
      https://www.nasa.gov/osiris-rex
      -fin-
      María José Viñas /Karen Fox / Molly Wasser
      Headquarters, Washington
      240-458-0248
      maria-jose.vinasgarcia@nasa.gov / karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Rani Gran
      Centro de Vuelo Espacial Goddard, Greenbelt, Maryland
      301-286-2483
      rani.c.gran@nasa.gov
      Share
      Details
      Last Updated Jan 29, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      NASA en español View the full article
    • By European Space Agency
      The European Space Agency (ESA) Planetary Defence Office is closely monitoring the recently discovered asteroid 2024 YR4, which has a very small chance of impacting Earth in 2032.
       This page was last updated on 29 January 2025.
      View the full article
  • Check out these Videos

×
×
  • Create New...