Members Can Post Anonymously On This Site
Advanced Modeling Enhances Gateway’s Lunar Dust Defense
-
Similar Topics
-
By NASA
An artist’s concept of NASA’s Orion spacecraft orbiting the Moon while using laser communications technology through the Orion Artemis II Optical Communications System.Credit: NASA/Dave Ryan As NASA prepares for its Artemis II mission, researchers at the agency’s Glenn Research Center in Cleveland are collaborating with The Australian National University (ANU) to prove inventive, cost-saving laser communications technologies in the lunar environment.
Communicating in space usually relies on radio waves, but NASA is exploring laser, or optical, communications, which can send data 10 to 100 times faster to the ground. Instead of radio signals, these systems use infrared light to transmit high-definition video, picture, voice, and science data across vast distances in less time. NASA has proven laser communications during previous technology demonstrations, but Artemis II will be the first crewed mission to attempt using lasers to transmit data from deep space.
To support this effort, researchers working on the agency’s Real Time Optical Receiver (RealTOR) project have developed a cost-effective laser transceiver using commercial-off-the-shelf parts. Earlier this year, NASA Glenn engineers built and tested a replica of the system at the center’s Aerospace Communications Facility, and they are now working with ANU to build a system with the same hardware models to prepare for the university’s Artemis II laser communications demo.
“Australia’s upcoming lunar experiment could showcase the capability, affordability, and reproducibility of the deep space receiver engineered by Glenn,” said Jennifer Downey, co-principal investigator for the RealTOR project at NASA Glenn. “It’s an important step in proving the feasibility of using commercial parts to develop accessible technologies for sustainable exploration beyond Earth.”
During Artemis II, which is scheduled for early 2026, NASA will fly an optical communications system aboard the Orion spacecraft, which will test using lasers to send data across the cosmos. During the mission, NASA will attempt to transmit recorded 4K ultra-high-definition video, flight procedures, pictures, science data, and voice communications from the Moon to Earth.
An artist’s concept of the optical communications ground station at Mount Stromlo Observatory in Canberra, Australia, using laser communications technology.Credit: The Australian National University Nearly 10,000 miles from Cleveland, ANU researchers working at the Mount Stromlo Observatory ground station hope to receive data during Orion’s journey around the Moon using the Glenn-developed transceiver model. This ground station will serve as a test location for the new transceiver design and will not be one of the mission’s primary ground stations. If the test is successful, it will prove that commercial parts can be used to build affordable, scalable space communication systems for future missions to the Moon, Mars, and beyond.
“Engaging with The Australian National University to expand commercial laser communications offerings across the world will further demonstrate how this advanced satellite communications capability is ready to support the agency’s networks and missions as we set our sights on deep space exploration,” said Marie Piasecki, technology portfolio manager for NASA’s Space Communications and Navigation (SCaN) Program.
As NASA continues to investigate the feasibility of using commercial parts to engineer ground stations, Glenn researchers will continue to provide critical support in preparation for Australia’s demonstration.
Strong global partnerships advance technology breakthroughs and are instrumental as NASA expands humanity’s reach from the Moon to Mars, while fueling innovations that improve life on Earth. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
The Real Time Optical Receiver (RealTOR) team poses for a group photo in the Aerospace Communications Facility at NASA’s Glenn Research Center in Cleveland on Friday, Dec. 13, 2024. From left to right: Peter Simon, Sarah Tedder, John Clapham, Elisa Jager, Yousef Chahine, Michael Marsden, Brian Vyhnalek, and Nathan Wilson.Credit: NASA The RealTOR project is one aspect of the optical communications portfolio within NASA’s SCaN Program, which includes demonstrations and in-space experiment platforms to test the viability of infrared light for sending data to and from space. These include the LCOT (Low-Cost Optical Terminal) project, the Laser Communications Relay Demonstration, and more. NASA Glenn manages the project under the direction of agency’s SCaN Program at NASA Headquarters in Washington.
The Australian National University’s demonstration is supported by the Australian Space Agency Moon to Mars Demonstrator Mission Grant program, which has facilitated operational capability for the Australian Deep Space Optical Ground Station Network.
To learn how space communications and navigation capabilities support every agency mission, visit:
https://www.nasa.gov/communicating-with-missions
Explore More
3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
Article 1 week ago 2 min read NASA Seeks Commercial Feedback on Space Communication Solutions
Article 1 week ago 4 min read NASA, DoD Practice Abort Scenarios Ahead of Artemis II Moon Mission
Article 2 weeks ago View the full article
-
By Space Force
Members of multiple U.S. Air Force security forces units, 4th Space Operations Squadron and other military units stationed along Colorado’s Front Range participated in a military exercise at Piñon Canyon Maneuver Site last week.
View the full article
-
By NASA
3 Min Read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
Better understanding the lunar lighting environment will help NASA prepare astronauts for the harsh environment Artemis III Moonwalkers will experience on their mission. NASA’s Artemis III mission will build on earlier test flights and add new capabilities with the human landing system and advanced spacesuits to send the first astronauts to explore the lunar South Pole and prepare humanity to go to Mars.
Using high-intensity lighting and low-fidelity mock-ups of a lunar lander, lunar surface, and lunar rocks, NASA engineers are simulating the Moon’s environment at the Flat Floor Facility to study and experience the extreme lighting condition. The facility is located at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
NASA engineers inside the Flat Floor Facility at Marshall Space Flight Center in Huntsville, Alabama, mimic lander inspection and assessment tasks future Artemis astronauts may do during Artemis III. Lights are positioned at a low angle to replicate the strong shadows that are cast across the lunar South Pole. NASA/Charles Beason “The goal is really to understand how shadows will affect lander visual inspection and assessment efforts throughout a future crewed mission,” said Emma Jaynes, test engineer at the facility. “Because the Flat Floor Facility is similar to an inverted air hockey table, NASA and our industry partners can rearrange large, heavy structures with ease – and inspect the shadows’ effects from multiple angles, helping to ensure mission success and astronaut safety for Artemis III.”
Data and analysis from testing at NASA are improving models Artemis astronauts will use in preparation for lander and surface operations on the Moon during Artemis III. The testing also is helping cross-agency teams evaluate various tools astronauts may use.
The 86-foot-long by 44-foot-wide facility at NASA is one of the largest, flattest, and most stable air-bearing floors in the world, allowing objects to move across the floor without friction on a cushion of air.
Test teams use large, 12-kilowatt and 6-kilowatt lights to replicate the low-angle, high contrast conditions of the lunar South Pole. Large swaths of fabric are placed on top of the epoxy floor to imitate the reflective properties of lunar regolith. All the mock-ups are placed on air bearings, allowing engineers to easily move and situate structures on the floor.
The Flat Floor Facility is an air-bearing floor, providing full-scale simulation capabilities for lunar surface systems by simulating zero gravity in two dimensions. Wearing low-fidelity materials, test engineers can understand how the extreme lighting of the Moon’s South Pole could affect surface operations during Artemis III. NASA/Charles Beason “The Sun is at a permanent low angle at the South Pole of the Moon, meaning astronauts will experience high contrasts between the lit and shadowed regions,” Jaynes said. “The color white can become blinding in direct sunlight, while the shadows behind a rock could stretch for feet and ones behind a lander could extend for miles.”
The laboratory is large enough for people to walk around and experience this phenomenon with the naked eye, adding insight to what NASA calls ‘human in-the-loop testing.
NASA is working with SpaceX to develop the company’s Starship Human Landing System to safely send Artemis astronauts to the Moon’s surface and back to lunar orbit for Artemis III.
Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
For more information about Artemis missions, visit:
https://www.nasa.gov/artemis
News Media Contact
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
Share
Details
Last Updated Jun 17, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
Human Landing System Program Artemis Artemis 3 General Humans in Space Marshall Space Flight Center Explore More
4 min read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
Article 2 months ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
Article 2 months ago 4 min read NASA Marshall Thermal Engineering Lab Provides Key Insight to Human Landing System
Article 7 months ago Keep Exploring Discover More Topics From NASA
Artemis III
Gateway Lunar Space Station
Built with international and industry partners, Gateway will be humanity’s first space station around the Moon. It will support a…
Space Launch System (SLS)
Humans In Space
View the full article
-
By NASA
by Dary Felix Garcia
NASA is preparing to make history by sending humans to the Moon’s South Pole. There, astronauts will conduct moonwalks for exploration, science experiments, and prepare humanity for the journey to Mars. Missions of this scale require extensive planning, especially when accounting for emergency scenarios such as a crew member becoming incapacitated.
To address this critical risk, the South Pole Safety Challenge invited the public to develop a compact, effective device capable of safely rescuing astronauts during emergency situations on the Moon’s surface. Given the harsh and unpredictable conditions of the lunar South Pole, the rescue system must be lightweight, easy to use, and able to transport an incapacitated crew member weighing approximately 755 lbs. (343 kg), representing the crew member and their suit, without the help of the lunar rover. It must also be capable of covering up to 1.24 miles (2 kilometers) across slopes as steep as 20 degrees.
“The initiative saved the government an estimated $1,000,000 and more than three years of work had the solutions been produced using in-house existing resources,” said Ryon Stewart, acting Program Manager of NASA’s Center of Excellence for Collaborative Innovation. “The effort demonstrated how crowdsourcing provides NASA with a wide diversity of innovative ideas and skills.”
The global challenge received 385 unique ideas from 61 countries. Five standout solutions received a share of the $45,000 prize purse. Each of the selected solutions demonstrated creativity, practicality, and direct relevance to NASA’s needs for future Moon missions.
The global challenge received 385 unique ideas from 61 countries. Five standout solutions received a share of the $45,000 prize purse. Each of the selected solutions demonstrated creativity, practicality, and direct relevance to NASA’s needs for future Moon missions.
First Place: VERTEX by Hugo Shelley – A self-deploying four-wheeled motorized stretcher that converts from a compact cylinder into a frame that securely encases an immobilized crew member for transport up to 6.2 miles (10 kilometers). Second Place: MoonWheel by Chamara Mahesh – A foldable manual trolley designed for challenging terrain and rapid deployment by an individual astronaut. Third Place: Portable Foldable Compact Emergency Stretcher by Sbarellati team – A foldable stretcher compatible with NASA’s Exploration Extravehicular Activity spacesuit. Third Place: Advanced Surface Transport for Rescue (ASTRA) by Pierre-Alexandre Aubé – A collapsible three-wheeled device with a 1.2 mile (2 kilometer) range. Third Place: Getting Rick to Roll! by InventorParents – A rapidly deployable, tool-free design suited for functionality in low gravity settings. NASA is identifying how to integrate some features of the winning ideas into current and future mission designs. Most intriguing are the collapsible concepts of many of the designs that would save crucial mass and volume. Additionally, the submissions offered innovative wheel designs to enhance current concepts. NASA expects to incorporate some features into planning for surface operations of the Moon.
HeroX hosted the challenge on behalf of NASA’s Extravehicular Activity and Human Surface Mobility Program. The NASA Tournament Lab, part of the Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate, managed the challenge. The program supports global public competitions and crowdsourcing as tools to advance NASA research and development and other mission needs.
Find more opportunities at https://www.nasa.gov/get-involved/
View the full article
-
By USH
The photograph was captured by the Mast Camera (Mastcam) aboard NASA’s Curiosity rover on Sol 3551 (August 2, 2022, at 20:43:28 UTC).
What stands out in the image are two objects, that appear strikingly out of place amid the natural Martian landscape of rocks and boulders. Their sharp edges, right angles, flat surfaces, and geometric symmetry suggest they may have been shaped by advanced cutting tools rather than natural erosion.
Could these ancient remnants be part of a destroyed structure or sculpture? If so, they may serve as yet another piece of evidence pointing to the possibility that Mars was once home to an intelligent civilization, perhaps even the advanced humanoid beings who, according to some theories, fled the catastrophic destruction of planet Maldek and sought refuge on the Red Planet.
Objects discovered by Jean Ward Watch Jean Ward's YouTube video on this topic: HereSee original NASA source: Here
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.