Jump to content

Recommended Posts

  • Publishers
Posted
2 Min Read

Advanced Modeling Enhances Gateway’s Lunar Dust Defense

A sample holder in a vacuum chamber spins during a lunar dust adhesion test at NASA’s Johnson Space Center.
Credits: NASA/Josh Litofsky

NASA’s Artemis campaign aims to return humans to the Moon, develop a sustainable presence there, and lay the groundwork for the first crewed missions to Mars. As the agency prepares for longer stays on and around the Moon, engineers are working diligently to understand the complex behavior of lunar dust, the sharp, jagged particles that can cling to spacesuits and jam equipment.

Lunar dust has posed a problem since astronauts first encountered it during the Apollo missions. Ahead of more frequent and intense contact with dust, NASA is developing new strategies to protect equipment as astronauts travel between the Moon and spacecraft like Gateway, humanity’s first lunar space station.

A man with short dark hair, wearing a navy-blue polo shirt and black gloves, works inside a metallic, box-shaped testing chamber with blue panels and multiple knobs, ports, and dials. He is scooping material from a small container.
Josh Litofsky, systems engineer at NASA’s Johnson Space Center, scoops material designed to behave like lunar dust to test how it adheres to Gateway materials.
NASA/Bill Stafford

Unlike Apollo-era spacecraft that faced lunar dust exposure just once, Gateway will encounter it each time a Human Landing System spacecraft returns to the space station from the lunar South Pole region. Dust could enter Gateway’s environment, risking damage to science instruments, solar arrays, robotic systems, and other important hardware.

Josh Litofsky is the principal investigator and project manager leading a Gateway lunar dust adhesion testing campaign at NASA’s Johnson Space Center in Houston. His team tracks how the dust interacts with materials used to build Gateway.

An artist's render shows the Gateway lunar space station in near rectilinear halo orbit around the Moon. Credit: NASA
An artist’s rendering of the Gateway lunar space station in polar orbit around the Moon.
NASA/Alberto Bertolin

“The particles are jagged from millions of years of micrometeoroid impacts, sticky due to chemical and electrical forces, and extremely small,” Litofsky said. “Even small amounts of lunar dust can have a big impact on equipment and systems.”

Litofksy’s work seeks to validate the Gateway On-orbit Lunar Dust Modeling and Analysis Program (GOLDMAP), developed by Ronald Lee, also of Johnson Space Center. By considering factors such as the design and configuration of the space station, the materials used, and the unique conditions in lunar orbit, GOLDMAP helps predict how dust may move and settle on Gateway’s external surfaces.

A man wearing a navy-blue shirt with a NASA logo leans closely toward a container inside a metallic testing chamber. He examines a cylindrical object with beige components and exposed wiring, while wearing black gloves.
Josh Litofsky, systems engineer at NASA’s Johnson Space Center, places a sample holder inside a vacuum chamber to test how lunar dust sticks to Gateway materials. NASA/Bill Stafford
NASA/Bill Stafford

Early GOLDMAP simulations have shown that lunar dust can form clouds around Gateway, with larger particles sticking to surfaces.

The data from these tests and simulations will help NASA safeguard Gateway, to ensure the space station’s longevity during the next era of lunar exploration.

The lessons learned managing lunar dust and other harsh conditions through Gateway and Artemis will prepare NASA and its international partners for missions deeper into the cosmos

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read La NASA revela los finalistas del concurso de diseño de la mascota lunar de Artemis II
      Read this story in English here.
      La NASA ya tiene 25 finalistas para el diseño del indicador de gravedad cero de Artemis II que volará con la tripulación de esta misión alrededor de la Luna y de regreso a la Tierra el próximo año.

      Los astronautas Reid Wiseman, Victor Glover y Christina Koch de la NASA, y el astronauta de la CSA (Agencia Espacial Canadiense) Jeremy Hansen pronto seleccionarán uno de los diseños finalistas para que les acompañe dentro de la nave espacial Orion como su mascota lunar.

      “El indicador de gravedad cero de Artemis II será especial para la tripulación”, dijo Reid Wiseman, comandante de Artemis II. “En una nave espacial llena de equipos y herramientas complejas que mantienen viva a la tripulación en el espacio profundo, el indicador es una forma amigable y útil de resaltar el elemento humano que es tan crítico para nuestra exploración del universo. Nuestra tripulación está entusiasmada con estos diseños provenientes de muchos lugares del mundo y esperamos con interés llevar al ganador con nosotros en este viaje”.

      Un indicador de gravedad cero es un pequeño peluche que típicamente viaja con la tripulación para indicar visualmente el momento en que llegan al espacio. Durante los primeros ocho minutos después del despegue, la tripulación y el indicador, que estará situado cerca de ellos, seguirán siendo presionados contra sus asientos por la gravedad y la fuerza de la subida al espacio. Cuando se apaguen los motores principales de la etapa central del cohete Sistema de Lanzamiento Espacial (SLS, por sus siglas en inglés), se eliminarán las restricciones de la gravedad, pero la tripulación seguirá atada de manera segura a sus asientos: la capacidad de flotar de su indicador de gravedad cero será la evidencia de que han llegado al espacio.

      Artemis II será la primera misión en la que el público haya participado en la creación de la mascota de la tripulación.

      Estos diseños, con ideas que abarcan desde versiones lunares de criaturas terrestres hasta visiones creativas sobre la exploración y el descubrimiento, fueron seleccionados entre más de 2.600 propuestas procedentes de más de 50 países, e incluyen diseños de estudiantes desde primaria a secundaria. Los finalistas representan a 10 países, entre los que están Estados Unidos, Canadá, Colombia, Finlandia, Francia, Alemania, Japón, Perú, Singapur y Gales.

      Mira aquí los diseños finalistas:

      Lucas Ye | Mountain View, California“Rise” Kenan Ziyan | Canyon, Texas“Zappy Zebra” Royal School, SKIES Space Club | Winnipeg, Manitoba, Canada“Luna the Space Polar Bear” Garden County Schools | Oshkosh, Nebraska“Team GarCo” Richellea Quinn Wijaya | Singapore“Parsec – The Bird That Flew to the Moon” Anzhelika Iudakova | Finland“Big Steps of Little Octopus” Congressional School | Falls Church, Virginia“Astra-Jelly” Congressional School | Falls Church, Virginia“Harper, Chloe, and Mateo’s ZGI” Alexa Pacholyk | Madison, Connecticut“Artemis” Leila Fleury | Rancho Palos Verdes, California“Beeatrice” Oakville Trafalgar School | Oakville, Ontario, Canada“Lepus the Moon Rabbit” Avon High School | Avon, Connecticut“Sal the Salmon” Daniela Colina | Lima, Peru“Corey the Explorer” Caroline Goyer-Desrosiers | St. Eustache, Quebec, Canada“Flying Squirrel Ready for Its Take Off to Space!” Giulia Bona | Berlin, Germany“Art & the Giant” Tabitha Ramsey | Frederick, Maryland“Lunar Crust-acean” Gabriela Hadas | Plano, Texas“Celestial Griffin” Savon Blanchard | Pearland, Texas“Soluna Flier” Ayako Moriyama | Kyoto, Japan“MORU: A Cloud Aglow with Moonlight and Hope” Johanna Beck | McPherson, Kansas“Creation Mythos” Guillaume Truong | Toulouse, France“Space Mola-mola (aka Moon Fish) Plushie” Arianna Robins | Rockledge, Florida“Terra the Titanosaurus” Sandy Moya | Madrid, Colombia“MISI: Guardian of the Journey” Bekah Crowmer | Mooresville, Indiana“Mona the Moon Moth” Courtney John | Llanelli, Wales“Past, Present, Future” En marzo, la NASA anunció que buscaba propuestas de creadores de todo el mundo para el diseño de un indicador de gravedad cero que volaría a bordo de Artemis II, la primera misión tripulada de la campaña Artemis de la NASA. Se pidió a los creadores que presentaran ideas que representaran la importancia de Artemis, la misión, o la exploración y el descubrimiento, y que cumplieran con requisitos específicos de tamaño y materiales. La empresa de crowdsourcing (colaboración abierta) Freelancer sirvió como facilitadora del concurso en nombre de la NASA, a través del Laboratorio de Campeonatos de la NASA, el cual es gestionado por la Dirección de Misiones de Tecnología Espacial de la agencia.

      Una vez que la tripulación haya seleccionado un diseño final, el Laboratorio de Mantas Térmicas de la NASA lo fabricará para el vuelo. El indicador estará amarrado dentro de Orion antes del lanzamiento.

      La misión, que tendrá alrededor de 10 días de duración, es otro paso adelante hacia misiones en la superficie lunar y sirve como preparación para futuras misiones tripuladas a Marte de la agencia.

      Mediante Artemis II, la NASA enviará astronautas a explorar la Luna para llevar a cabo descubrimientos científicos, obtener beneficios económicos y sentar las bases para las primeras misiones tripuladas a Marte.
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Lunar Environment Structural Test Rig simulates the intense cold of the lunar night, ranging from 40 Kelvin (K) to 125 K while maintaining a vacuum environment. This creates a tool by which scientists and engineers can test materials, electronics, and flight hardware for future Moon and Mars missions, characterizing their behaviors at these temperatures while also validating their ability to meet design requirements.
      Cryogenic engineer Adam Rice tests the Lunar Environment Structural Test Rig to simulate the thermal-vacuum conditions of the lunar night on Thursday, May 22, 2025.NASA/Jef Janis Facility Overview
      The Lunar Environment Structural Test Rig (LESTR) approaches the problem of creating a simulated lunar environment by departing from typical fluid immersion or jacketed-and-chilled chamber systems. It does this by using a cryocooler to reject heat and bring the test section to any point desired by the test engineer, as low as 40 K or as high as 125 K in a vacuum environment. By combining high vacuum and cryogenic temperatures, LESTR enables safe, accurate, and cost-effective testing of materials and hardware destined for the Moon and beyond. Its modular setup supports a wide range of components — from spacesuits to rover wheels to electronics — while laying the foundation for future Moon and Mars mission technologies.
      Quick Facts
      LESTR is a cryogenic mechanical test system built up within a conventional load frame with the goal of providing a tool to simulate the thermal-vacuum conditions of the lunar night to engineers tasked with creating the materials, tools, and machinery to succeed in NASA’s missions.
      LESTR replicates extreme lunar night environments — including temperatures as low as 40 K and high vacuum (<5×10⁻⁷ Torr) — enabling true-to-space testing without liquid cryogens. Unlike traditional “wet” methods, LESTR uses a cryocooler and vacuum system to create an environment accurate to the lunar surface. From rover wheels to spacesuits to electronics, LESTR supports static and dynamic testing across a wide range of Moon and Mars mission hardware. With scalable architecture and precision thermal control, LESTR lays critical groundwork for advancing the technologies of NASA’s Artemis missions and beyond. Capabilities
      Specifications
      Temperature Range: 40 K to 125 K Load Capacity: ~10 kN Vacuum Level: <5×10⁻⁷ Torr Test Volume (Cold Box Dimensions): 7.5 by 9.5 by 11.5 inches Maximum Cycle Rate: 100 Hz Time to Vacuum:10⁻⁵ Torr in less than one hour 10⁻⁶ Torr in four hours Features
      Dry cryogenic testing (no fluid cryogen immersion) “Dial-a-temperature” control for precise thermal conditions Integrated optical extensometer for strain imaging Digital image correlation and electrical feedthroughs support a variety of data collection methods Native support for high-duration cyclic testing Applications
      Cryogenic Lifecycle Testing: fatigue, fracture, and durability assessments Low-Frequency Vibration Testing: electronics qualification for mobility systems Static Load Testing: material behavior characterization in lunar-like environments Suspension and Drivetrain Testing: shock absorbers, wheels, springs, and textiles Textiles Testing: evaluation of spacesuits and habitat fabrics Dynamic Load Testing: up to 10 kN linear capacity, 60 mm stroke Contact
      Cryogenic and Mechanical Evaluation Lab Manager: Andrew Ring
      216-433-9623
      Andrew.J.Ring@nasa.gov
      LESTR Technical Lead: Ariel Dimston
      216-433-2893
      Ariel.E.Dimston@nasa.gov
      Using Our Facilities
      NASA’s Glenn Research Center in Cleveland provides ground test facilities to industry, government, and academia. If you are considering testing in one of our facilities or would like further information about a specific facility or capability, please let us know.
      Gallery
      The Lunar Environment Structural Test Rig simulates the intense cold of the lunar night on Friday, June 6, 2025.NASA/Steven Logan The Lunar Environment Structural Test Rig uses a cryocooler to reject heat and bring the test section as low as 40 Kelvin in a vacuum environment on Thursday, May 22, 2025.NASA/Jef Janis Keep Exploring Discover More Topics From NASA
      Aeronautics Research
      NASA Glenn Virtual Tours
      Hubble Space Telescope (A)
      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
      Gemini
      View the full article
    • By NASA
      5 min read
      Close-Up Views of NASA’s DART Impact to Inform Planetary Defense
      Photos taken by the Italian LICIACube, short for the LICIA Cubesat for Imaging of Asteroids. These offer the closest, most detailed observations of NASA’s DART (Double Asteroid Redirection Test) impact aftermath to date. The photo on the left was taken roughly 2 minutes and 40 seconds after impact, as the satellite flew past the Didymos system. The photo on the right was taken 20 seconds later, as LICIACube was leaving the scene. The larger body, near the top of each image is Didymos. The smaller body in the lower half of each image is Dimorphos, enveloped by the cloud of rocky debris created by DART’s impact. NASA/ASI/University of Maryland On Sept. 11, 2022, engineers at a flight control center in Turin, Italy, sent a radio signal into deep space. Its destination was NASA’s DART (Double Asteroid Redirection Test) spacecraft flying toward an asteroid more than 5 million miles away.
       
      The message prompted the spacecraft to execute a series of pre-programmed commands that caused a small, shoebox-sized satellite contributed by the Italian Space Agency (ASI), called LICIACube, to detach from DART.
       
      Fifteen days later, when DART’s journey ended in an intentional head-on collision with near-Earth asteroid Dimorphos, LICIACube flew past the asteroid to snap a series of photos, providing researchers with the only on-site observations of the world’s first demonstration of an asteroid deflection.
       
      After analyzing LICIACube’s images, NASA and ASI scientists report on Aug. 21 in the Planetary Science Journal that an estimated 35.3 million pounds (16 million kilograms) of dust and rocks spewed from the asteroid as a result of the crash, refining previous estimates that were based on data from ground and space-based observations.
       
      While the debris shed from the asteroid amounted to less than 0.5% of its total mass, it was still 30,000 times greater than the mass of the spacecraft. The impact of the debris on Dimorphos’ trajectory was dramatic: shortly after the collision, the DART team determined that the flying rubble gave Dimorphos a shove several times stronger than the hit from the spacecraft itself.
       
      “The plume of material released from the asteroid was like a short burst from a rocket engine,” said Ramin Lolachi, a research scientist who led the study from NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
       
      The important takeaway from the DART mission is that a small, lightweight spacecraft can dramatically alter the path of an asteroid of similar size and composition to Dimorphos, which is a “rubble-pile” asteroid — or a loose, porous collection of rocky material bound together weakly by gravity.
       
      “We expect that a lot of near-Earth asteroids have a similar structure to Dimorphos,” said Dave Glenar, a planetary scientist at the University of Maryland, Baltimore County, who participated in the study. “So, this extra push from the debris plume is critical to consider when building future spacecraft to deflect asteroids from Earth.”
      The tail of material that formed behind Dimorphos was prominent almost 12 days after the DART impact, giving the asteroid a comet-like appearance, as seen in this image captured by NASA’s Hubble Space Telescope in October 2022. Hubble’s observations were made from roughly 6.8 million miles away. NASA, ESA, STScI, Jian-Yang Li (PSI); Image Processing: Joseph DePasquale DART’s Star Witness
      NASA chose Dimorphos, which poses no threat to Earth, as the mission target due to its relationship with another, larger asteroid named Didymos. Dimorphos orbits Didymos in a binary asteroid system, much like the Moon orbits Earth. Critically, the pair’s position relative to Earth allowed astronomers to measure the duration of the moonlet’s orbit before and after the collision.
       
      Ground and space-based observations revealed that DART shortened Dimorphos’ orbit by 33 minutes. But these long-range observations, made from 6.8 million miles (10.9 million kilometers) away, were too distant to support a detailed study of the impact debris. That was LICIACube’s job.
      After DART’s impact, LICIACube had just 60 seconds to make its most critical observations. Barreling past the asteroid at 15,000 miles (21,140 kilometers) per hour, the spacecraft took a snapshot of the debris roughly once every three seconds. Its closest image was taken just 53 miles (85.3 km) from Dimorphos’ surface.
       
      The short distance between LICIACube and Dimorphos provided a unique advantage, allowing the cubesat to capture detailed images of the dusty debris from multiple angles.
       
      The research team studied a series of 18 LICIAcube images. The first images in the sequence showed LICIACube’s head-on approach. From this angle, the plume was brightly illuminated by direct sunlight. As the spacecraft glided past the asteroid, its camera pivoted to keep the plume in view.
      This animated series of images was taken by a camera aboard LICIACube 2 to 3 minutes after DART crashed into Dimorphos. As LICIACube made its way past the binary pair of asteroids Didymos, the larger one on top, and Dimorphos, the object at the bottom. The satellite’s viewing angle changed rapidly during its flyby of Dimorphos, allowing scientists o get a comprehensive view of the impact plume from a series of angles. ASI/University of Maryland/Tony Farnham/Nathan Marder  As LICIACube looked back at the asteroid, sunlight filtered through the dense cloud of debris, and the plume’s brightness faded. This suggested the plume was made of mostly large particles — about a millimeter or more across — which reflect less light than tiny dust grains.
      Since the innermost parts of the plume were so thick with debris that they were completely opaque, the scientists used models to estimate the number of particles that were hidden from view. Data from other rubble-pile asteroids, including pieces of Bennu delivered to Earth in 2023 by NASA’s OSIRIS-REx spacecraft, and laboratory experiments helped refine the estimate.
       
      “We estimated that this hidden material accounted for almost 45% of the plume’s total mass,” said Timothy Stubbs, a planetary scientist at NASA Goddard who was involved with the study.
       
      While DART showed that a high-speed collision with a spacecraft can change an asteroid’s trajectory, Stubbs and his colleagues note that different asteroid types, such as those made of stronger, more tightly packed material, might respond differently to a DART-like impact. “Every time we interact with an asteroid, we find something that surprises us, so there’s a lot more work to do,” said Stubbs. “But DART is a big step forward for planetary defense.”
       
      The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, managed the DART mission and operated the spacecraft for NASA’s Planetary Defense Coordination Office as a project of the agency’s Planetary Missions Program Office.
       
      By Nathan Marder, nathan.marder@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Aug 21, 2025 Related Terms
      DART (Double Asteroid Redirection Test) Explore More
      2 min read NASA’s DART Team Earns AIAA Space Systems Award for Pioneering Mission


      Article


      12 months ago
      5 min read NASA’s DART Mission Sheds New Light on Target Binary Asteroid System


      Article


      1 year ago
      3 min read NASA Selects Participating Scientists to Join ESA’s Hera Mission


      Article


      1 year ago
      Keep Exploring Discover Related Topics
      Double Asteroid Redirection Test (DART)



      Asteroids, Comets & Meteors



      Our Solar System



      For Planetary Science Researchers


      Resources specifically curated to help planetary science researchers, whether new to the field or seasoned professionals.

      View the full article
    • By NASA
      De izquierda a derecha, los astronautas de la NASA Victor Glover, piloto de Artemis II y Reid Wiseman, comandante de Artemis II, el astronauta de la CSA (Agencia Espacial Canadiense) Jeremy Hansen, especialista de misión para Artemis II, y la astronauta de la NASA Christina Koch, especialista de misión para Artemis II, se ponen los trajes espaciales y salen del Edificio de Operaciones y Control Neil A. Armstrong del Centro Espacial Kennedy de la NASA en Florida el 11 de agosto.Crédito: NASA/Kim Shiflett Read this release in English here.
      La NASA ha abierto el plazo para la acreditación de los medios a un programa de eventos de varios días de duración para presentar a la nueva promoción de astronautas de Estados Unidos y proporcionar información sobre el vuelo de prueba tripulado de la misión Artemis II alrededor de la Luna. Las actividades tendrán lugar en septiembre en el Centro Espacial Johnson de la agencia en Houston.
      Después de evaluar más de 8.000 solicitudes, la NASA presentará a su nueva generación de candidatos a astronauta de 2025 durante una ceremonia que se llevará a cabo el lunes 22 de septiembre a las 12:30 p.m. hora del este. Después de la ceremonia, los candidatos estarán disponibles para entrevistas con los medios.
      El evento de selección de astronautas se transmitirá en vivo en NASA+, Netflix, Amazon Prime, el canal de YouTube de la agencia y en la cuenta de X de la NASA, en idioma inglés.
      Los candidatos seleccionados se someterán a casi dos años de entrenamiento antes de graduarse como astronautas elegibles para el vuelo en las misiones de la agencia a la órbita baja de la Tierra, la Luna y, más adelante, el planeta Marte.
      A continuación de este evento, la NASA ofrecerá una serie de sesiones informativas para los medios de comunicación el martes 23 de septiembre y el miércoles 24 de septiembre, donde se dará un anticipo de la misión Artemis II, programada para despegar no más tarde de abril de 2026. Este vuelo de prueba —que será lanzado a bordo del cohete Sistema de Lanzamiento Espacial (SLS, por sus siglas en inglés) y la nave espacial Orion— enviará a los astronautas de la NASA Reid Wiseman, Victor Glover y Christina Koch, junto con el astronauta de la CSA (Agencia Espacial Canadiense) Jeremy Hansen, en una misión alrededor de la Luna que durará cerca de 10 días.
      Artemis II ayudará a comprobar el funcionamiento de los sistemas y el hardware necesarios para la exploración humana del espacio profundo. Esta misión es el primer vuelo tripulado de la campaña Artemis de la NASA, y es otro paso adelante hacia nuevas misiones tripuladas de Estados Unidos en la superficie de la Luna que ayudarán a la agencia a prepararse para enviar a astronautas estadounidenses a Marte.
      Los eventos de las sesiones informativas de Artemis II serán transmitidos en vivo por el canal de YouTube y la cuenta de X de la agencia, en idioma inglés. Este enlace ofrece más información (en inglés) sobre cómo ver contenido a través de las diferentes plataformas de la NASA.
      Después de las sesiones informativas, el 24 de septiembre la NASA ofrecerá una jornada para los medios de comunicación dedicada a Artemis II en el centro Johnson de la agencia, y mostrará las instalaciones de apoyo a la misión, los entrenadores y el hardware para las misiones Artemis. Asimismo, ofrecerá oportunidades de entrevistas con líderes, directores de vuelo, astronautas, científicos e ingenieros de esta campaña.
      Los representantes de los medios que deseen participar en persona deben comunicarse con la sala de prensa del centro Johnson de la NASA llamando al teléfono 281-483-5111 o escribiendo al correo electrónico jsccommu@mail.nasa.gov, indicando a qué eventos desean asistir. Los medios confirmados recibirán detalles adicionales sobre su participación en estos eventos. Una copia de la política de acreditación de medios de la NASA está disponible (en inglés) en el sitio web de la agencia. Los plazos de la acreditación de medios para la selección de candidatos a astronauta y los eventos de Artemis II son los siguientes:
      Los miembros de medios de comunicación con ciudadanía estadounidense  que estén interesados en asistir en persona deben confirmar su asistencia a más tardar a las 5 p. m. hora del este del miércoles 17 de septiembre. Los miembros de medios de comunicación sin ciudadanía estadounidense  deben confirmar su asistencia a más tardar a las 5 p. m. del miércoles 10 de septiembre. 
      Los medios que soliciten entrevistas en persona o virtuales con los candidatos a astronautas, los expertos de Artemis o la tripulación de Artemis II deben enviar sus solicitudes a la sala de prensa del centro Johnson de la NASA antes del miércoles 17 de septiembre. Las solicitudes de entrevistas en persona están sujetas a los plazos de acreditación indicados anteriormente.
      La información sobre la selección de candidatos a astronauta y los eventos de Artemis II, incluida la lista de participantes de las sesiones informativas, es la siguiente (todos los horarios son en hora del este de Estados Unidos):

      Lunes, 22 de septiembre 
      12:30 p.m.: 2025: Ceremonia de selección de candidatos a astronauta de 2025
      Martes, 23 de septiembre 
      11 a.m.: Informe general sobre la misión Artemis II
      Lakiesha Hawkins, administradora adjunta interina, Dirección de Misiones de Desarrollo de Sistemas de Exploración, sede central de la NASA Charlie Blackwell-Thompson, directora de lanzamiento de Artemis II, Centro Espacial Kennedy de la NASA en Florida Jeff Radigan, director de vuelo principal de Artemis II, centro Johnson de la NASA Judd Frieling, director principal de vuelo de ascenso de Artemis II, centro Johnson de la NASA Rick Henfling, director principal de vuelo de ingreso de Artemis II, centro Johnson de la NASA Daniel Florez, director de pruebas, Sistemas Terrestres de Exploración, centro Kennedy de la NASA [Florez es hispanohablante] 1 p.m.: Sesión informativa sobre ciencia y tecnología de Artemis II
      Matt Ramsey, gerente de la misión Artemis II, sede central de la NASA Howard Hu, gerente del programa Orion, centro Johnson de la NASA Jake Bleacher, gerente de Ciencia, Uso de Tecnología e Integración, Dirección de Misiones de Desarrollo de Sistemas de Exploración, sede central de ka BASA Mark Clampin, administrador adjunto interino, Dirección de Misiones Científicas, sede central de la NASA Los medios que deseen participar por teléfono deben solicitar información de acceso telefónico antes de las 5 p. m. del 22 de septiembre, enviando un correo electrónico a la sala de prensa del centro Johnson de la NASA.
      Miércoles, 24 de septiembre
      10 a.m.: Conferencia de prensa de la tripulación de Artemis II
      Reid Wiseman, comandante Victor Glover, pilot o Christina Koch, especialista de misión  Jeremy Hansen, especialista de misión  Los medios que deseen participar por teléfono deben solicitar información de acceso telefónico antes de las 5 p. m. del 23 de septiembre, enviando un correo electrónico a la sala de prensa del centro Johnson de la NASA.
      Encuentre más información sobre cómo la NASA lidera las iniciativas de vuelos espaciales tripulados en el sitio web (en inglés):  
      https://www.nasa.gov/humans-in-space
      -fin- 
      Jimi Russell / Rachel Kraft / María José Viñas 
      Sede central de la NASA, Washington 
      202-358-1100 
      james.j.russell@nasa.gov / rachel.h.kraft@nasa.gov  / maria-jose.vinasgarcia@nasa.gov
      Courtney Beasley / Chelsey Ballarte 
      Centro Espacial Johnson, Houston 
      281-910-4989 
      courtney.m.beasley@nasa.gov / chelsey.n.ballarte@nasa.gov 
      Share
      Details
      Last Updated Aug 20, 2025 LocationNASA Headquarters Related Terms
      NASA en español Artemis Artemis 2 Candidate Astronauts Mars View the full article
    • By Amazing Space
      Views Of The Moon From Lunar Orbit
  • Check out these Videos

×
×
  • Create New...