Jump to content

35 Years Ago: NASA Selects its 13th Group of Astronauts 


Recommended Posts

  • Publishers
Posted

On Jan. 17, 1990, NASA announced the selection of its 13th group of astronaut candidates. The diverse group comprised 23 candidates – seven pilots and 16 mission specialists. The group included one African American, one Asian American, and five women including the first female pilot and the first Hispanic woman. Following one year of astronaut candidate training, all 23 became eligible for technical assignments within the astronaut office and for assignment to space shuttle crews. All members of the group completed at least one spaceflight, making significant contributions to the space shuttle program, the Shuttle Mir program, important science missions, and assembly and maintenance of the International Space Station. Several went on to serve in key NASA management positions. 

Outdoor group photo of 23 men and women wearing blue overall flight suits, with a jet airplane in the background.
The Group 13 NASA astronaut candidates pose for a group photo – front row kneeling, Charles Precourt, left, Janice Voss, Ellen Ochoa, David Wolf, Eileen Collins, and Daniel Bursch; standing, William Gregory, left, Jeffrey Wisoff, Carl Walz, Richard Searfoss, Donald Thomas, James Halsell, Thomas Jones, James Newman, Kenneth Cockrell, Bernard Harris, Leroy Chiao, Ronald Sega, Susan Helms, William McArthur, Nancy Sherlock, Richard Clifford, and Terrance Wilcutt.

The newest class of NASA astronaut candidates included pilot candidates Kenneth Cockrell, Eileen Collins, William Gregory, James Halsell, Charles Precourt, Richard Searfoss, and Terrence Wilcutt and mission specialist candidates Daniel Bursch, Leroy Chiao, Rich Clifford, Bernard Harris, Susan Helms, Thomas Jones, William Mc Arthur, James Newman, Ellen Ochoa, Ronald Sega, Nancy Sherlock, Donald Thomas, Janice Voss, Carl Walz, Jeffrey Wisoff, and David Wolf. From the 1,945 qualified applicants, NASA invited 103 candidates for interviews and medical exams at NASA’s Johnson Space Center (JSC) in Houston between September and November 1989. 

The 23 astronaut candidates reported to work at JSC on July 16, 1990, to begin their one-year training period. During the yearlong training, the candidates attended classes in applied sciences, space shuttle systems, space medicine, Earth and planetary sciences, and materials sciences. They visited each of the NASA centers to learn about their functions and received instruction in flying the T-38 Talon training aircraft, high-altitude and ground egress systems, survival skills, parasail flight, and scuba. They experienced short-duration weightlessness aboard NASA’s KC-135 aircraft dubbed the Vomit Comet. After completing the astronaut candidate training, they qualified for various technical assignments within the astronaut office leading to assignments to space shuttle crews. 

Per tradition, most astronaut classes have a nickname, often humorously given to them by the previous class of astronauts. In the case of the class of 1990, they chose their own nickname, The Hairballs. The origin stems from the class adopting a black cat as their mascot, in recognition of their class number 13. The nickname came about as hairballs are often associated with cats. 

Daniel Bursch 

Born in Pennsylvania, Bursch grew up in New York state and graduated from the U.S. Naval Academy. He served as a pilot in the U.S. Navy prior to his selection as an astronaut. He received his first flight assignment as a mission specialist on STS-51, flying with fellow Hairballs Newman and Walz on the 10-day flight aboard Discovery in 1993. On his second mission, the 10-day STS-68 flight aboard Endeavour in 1994, Bursch, accompanied by fellow classmates Jones, Wilcutt, and Wisoff, served as a mission specialist on the Space Radar Laboratory-2 (SRL-2) Earth observation mission. For his third trip into space, Bursch flew as a mission specialist aboard Endeavour for the 10-day STS-77 mission in 1996. For his fourth and final spaceflight, Bursch, along with fellow Hairball Walz, spent 196 days in space as an Expedition 4 flight engineer aboard the space station in 2001 and 2002, conducting two spacewalks totaling 11 hours 46 minutes. He launched on STS-108 and returned on STS-111. Across his four missions, Bursch accumulated 227 days in space. 

Leroy Chiao 

California native Chiao earned a doctorate in chemical engineering from the University of California, Santa Barbara, before NASA selected him as an astronaut. For his first flight, he flew as a mission specialist on STS-65, the International Microgravity Lab-2 (IML-2) mission aboard Columbia in 1994. Fellow Hairballs Halsell, Walz, and Thomas accompanied Chiao on the nearly 15-day flight, the longest shuttle mission up to that time. During his second spaceflight, the nine-day STS-72 flight of Endeavour in 1996, Chiao participated in two spacewalks totaling 13 hours 3 minutes to demonstrate future techniques. In 2000, Chiao, accompanied by fellow classmates McArthur and Wisoff, flew the 13-day STS-92 3A space station assembly mission aboard Discovery. He participated in two spacewalks with classmate McArthur totaling 13 hours 16 minutes. For his fourth and final mission, Chiao served as commander of Expedition 10 in 2004 and 2005, spending 193 days in space. During the mission, he conducted two spacewalks totaling 9 hours 58 minutes. During his four flights, Chiao logged 229 days in space and spent more than 36 hours outside on his six spacewalks. 

Rich Clifford 

Clifford, born in California, grew up in Ogden, Utah. He holds the distinction as one of the first three astronauts of his class assigned to a spaceflight, the seven-day STS-53 mission aboard Discovery in 1992 to deploy a large satellite for the Department of Defense. His second flight, the SRL-1 mission aboard Endeavour took place in 1994. Fellow Hairball Jones accompanied him on the STS-59 11-day Earth observation mission. For his third and final spaceflight, Clifford flew as a mission specialist on the STS-76 third Shuttle Mir docking mission. During the nine-day mission in 1996, accompanied by fellow classmate Sega, Clifford participated in a six-hour one-minute spacewalk. During his three spaceflights, he accumulated nearly 28 days in space. 

Kenneth Cockrell 

Cockrell, a native Texan, served as naval aviator prior to his selection as an astronaut. On his first mission, STS-56, he served as a mission specialist for the nine-day ATLAS-2 Earth observation mission in 1993. Fellow classmate Ochoa accompanied him on the flight aboard Discovery. Cockrell served as pilot on his second mission, the 11-day STS-69 Endeavour flight in 1995 to deploy and retrieve the Wake Shield Facility. Classmate Voss accompanied him on this mission. Cockrell commanded his third spaceflight, STS-80 in 1996 aboard Columbia, accompanied by fellow Hairball Jones. At 17 days 15 hours 53 minutes days, it holds the distinction as the longest shuttle flight. He once again served as commander on his fourth mission, the STS-98 5A space station assembly flight in 2001. Accompanied by classmate Jones, the crew delivered the U.S. Laboratory Module Destiny during the 13-day mission. On his fifth and final spaceflight, Cockrell commanded the STS-111 space station UF-2 utilization mission in 2002. During the 14-day flight, the crew brought the Expedition 5 crew to the station and returned the Expedition 4 crew, including Hairballs Bursch and Walz. During his five missions, Cockrell accumulated 64.5 days in space. He served as Chief of the Astronaut Office from October 1997 to October 1998. 

Eileen Collins 

Hailing from New York state, Collins has the distinction as the first female selected by NASA as a shuttle pilot. She received her first flight assignment as pilot of STS-63, the eight-day Shuttle-Mir rendezvous mission in 1995. Fellow classmates Harris and Voss accompanied her aboard Discovery. Collins once again served as pilot on STS-84, the sixth Shuttle-Mir docking mission commanded by fellow Hairball Precourt. The nine-day flight aboard Atlantis took place in 1997. On her third flight, Collins served as the first female commander of a space mission, the five-day STS-93 flight of Columbia in 1999 to deploy the Chandra X-ray Observatory. She commanded her fourth and final mission, the STS-114 return to flight mission following the Columbia accident. The 14-day flight aboard Discovery took place in 2005. During her four missions, Collins logged 36 days in space. 

William Gregory 

New York native Gregory served as a U.S. Air Force pilot when NASA selected him as an astronaut. He flew his single mission as pilot of STS-67, the 17-day Astro-2 mission aboard Endeavour in 1995. The mission set a record for the longest shuttle flight up to that time. 

James Halsell 

Halsell, a native of Louisiana, served as a U.S. Air Force pilot when NASA selected him as an astronaut. On his first spaceflight, he served as pilot on STS-65, the IML-2 mission aboard Columbia in 1994. Fellow Hairballs Chiao, Walz, and Thomas accompanied Halsell on the nearly 15-day flight, the longest shuttle mission up to that time. Halsell once again served as pilot on his second flight, STS-74, the second Shuttle-Mir docking mission that delivered the Docking Module to Mir. Classmate McArthur joined Halsell on the eight-day Atlantis flight in 1995. He commanded his third spaceflight, STS-83 aboard Columbia, the Microgravity Sciences Lab in 1997. Because managers cut the flight short after four days due to a fuel cell failure, NASA decided to refly the mission, with the same crew, later in the year as STS-94, and it stayed in space for nearly 16 days. Classmates Voss and Thomas accompanied Halsell on both missions. Halsell also commanded his fifth and final spaceflight, the STS-101 2A.2a space station logistics mission in 2000. Classmate Helms accompanied Halsell on the 10-day mission aboard Atlantis. During his five missions, Halsell accumulated more than 52 days of spaceflight time.  

Bernard Harris 

Texas native Harris served as a NASA flight surgeon when the agency selected him as an astronaut. He holds the distinction as one of the first three astronauts of his class assigned to a spaceflight. He served as a mission specialist on the STS-55 joint U.S.-German Spacelab D2 mission in 1993. Fellow Hairball Precourt accompanied him on the 10-day flight aboard Columbia. Harris flew as payload commander on his second and final spaceflight, the STS-63 Mir rendezvous mission in 1995, accompanied by classmates Collins and Voss. During the flight, Harris conducted a 4-hour 49-minute spacewalk, earning the distinction as the first African American to do so. Across his two missions, Harris logged 18 days in space. 

Susan Helms 

Helms, a native of Portland, Oregon, graduated from the U.S. Air Force Academy in the first class that included women. Shortly after her selection as an astronaut, NASA assigned her to her first spaceflight, and she holds the distinction as one of the first three astronauts of her class assigned to a mission. She flew as a mission specialist on STS-54, a six-day flight aboard Endeavour in 1993 that deployed the sixth Tracking and Data Relay Satellite. On her second mission, Helms flew aboard STS-64, an 11-day flight aboard Discovery in 1994. She served as the payload commander on STS-78, the Life and Microgravity Sciences Spacelab mission aboard Columbia in 1996. The flight set a then-record of 16 days 22 hours for the longest space shuttle mission. On her fourth mission, she served as a mission specialist on STS-101, the 2A.2a space station logistics mission in 2000 commanded by classmate Halsell. The Atlantis mission lasted 10 days. For her fifth and final spaceflight, she served as a flight engineer during Expedition 2, the first woman to fly a long-duration mission on the International Space Station. She conducted one spacewalk lasting 8 hours 56 minutes, a record not broken until 2024. During her five spaceflights she logged 211 days in space. 

Thomas Jones 

Jones, a native of Baltimore, graduated from the U.S. Air Force Academy and served as a B-52 pilot when NASA selected him as an astronaut. For his first spaceflight, he served as a mission specialist on STS-59, the 11-day SRL-1 Earth observation mission on Endeavour in 1994, along with classmate Clifford. Later that same year, with just 163 days between the two missions – the second shortest turnaround time in history – Jones served as payload commander on STS-68, the 11-day SRL-2 mission also on Endeavour. Fellow Hairballs Wilcutt, Wisoff, and Bursch accompanied him on the mission. In 1996, Jones flew as a mission specialist on STS-80, commanded by classmate Cockrell. During the nearly 18-day flight – the longest shuttle flight in history – Jones had planned to participate in two spacewalks, but a stuck bolt prevented the opening of Columbia’s airlock hatch, forcing the cancelation of the excursions. Jones flew his fourth and final mission in 2001, the STS-98 5A space station assembly flight, commanded by classmate Cockrell. During the 13-day mission of Atlantis, the crew installed the U.S. Laboratory Module Destiny and Jones participated in three spacewalks totaling nearly 20 hours. During his four spaceflights, Jones logged 53 days in space. 

William McArthur 

Hailing from North Carolina, West Point graduate McArthur worked as a space shuttle vehicle integration test engineer at JSC when NASA selected him as an astronaut. He received his first spaceflight assignment as a mission specialist on the STS-58 Spacelab Life Sciences-2 (SLS-2) mission in 1993. Classmates Searfoss and Wolf accompanied him on the 14-day Columbia mission, at the time the longest space shuttle flight. In 1995, he flew as a mission specialist on STS-74, the second Shuttle Mir docking mission that brought the Docking Module to Mir. Classmate Halsell served as pilot on the eight-day flight of Atlantis. McArthur next flew on STS-92, the 3A space station assembly mission in 2000, accompanied by classmates Chiao and Wisoff. McArthur completed two spacewalks with Chiao totaling 13 hours 16 minutes during the 13-day Atlantis mission. For his fourth and final spaceflight, McArthur served as commander of the 190-day Expedition 12 in 2005-2006, conducting two spacewalks totaling 11 hours 5 minutes. During his four missions, McArthur logged 225 days in space and spent more than 24 hours on four spacewalks. He served as the director of the JSC Safety and Mission Assurance Directorate from 2011 to 2017. 

James Newman 

Born in Micronesia, Newman grew up in San Diego and earned a doctorate in physics from Rice University. He worked at JSC as a crew and flight controller trainer when NASA selected him as an astronaut. For his first spaceflight assignment, Newman flew as a mission specialist on STS-51 in 1993 with fellow Hairballs Bursch and Walz. During the 10-day mission aboard Discovery, Newman conducted a 7-hour 5-minute spacewalk with Walz to demonstrate future spacewalking techniques. His second flight took place in 1995, the 11-day STS-69 mission of Endeavour, with classmate Halsell serving as pilot. On his third mission, Newman flew as a mission specialist on STS-88, the first space station assembly flight in 1998. Classmate Sherlock, now using her married name Currie, accompanied him on the 12-day Atlantis mission. Newman participated in three spacewalks totaling 21 hours 22 minutes. For his fourth and final spaceflight in 2002, Newman flew on STS-109, the fourth servicing mission to the Hubble Space Telescope, accompanied once again by classmate Currie. During the 11-day Columbia mission, Newman conducted two spacewalks totaling 14 hours 46 minutes. During his career four spaceflights, Newman logged more than 43 days in space and spent nearly 50 hours on six spacewalks. 

Ellen Ochoa 

Born in Los Angeles, Ochoa received her doctorate in electrical engineering from Stanford University and worked at NASA’s Ames Research Center in California’s Silicon Valley when NASA selected her as an astronaut. Her first flight assignment came in 1993 when she flew as a mission specialist on STS-56, the nine-day ATLAS-2 Earth observation mission. Classmate Cockrell accompanied her on the Discovery mission. On her second spaceflight, she served as payload commander on the STS-66 ATLAS-3 mission, an 11-day flight of Atlantis in 1994. For her third flight, she flew on Discovery’s STS-96, the 10-day 2A.1 space station assembly and logistics mission in 1999. In 2002, on her fourth and final mission, STS-110, she served as a mission specialist on the 8A space station assembly flight that brought the S0 truss to the facility. The flight on Atlantis lasted nearly 11 days. Over her four missions, Ochoa accumulated nearly 41 days in space. Following her spaceflights, Ochoa served in management positions with increasing scope and responsibilities, as director of the Flight Crew Operations Directorate, JSC deputy director, and JSC director. 

Charles Precourt 

Massachusetts native Precourt graduated from the U.S. Air Force Academy and served as a U.S. Air Force pilot when NASA selected him as an astronaut. On his first spaceflight in 1993, he served as a mission specialist on STS-55, the joint U.S.-German Spacelab D2 mission. Fellow Hairball Harris accompanied him on the 10-day Columbia mission. On his next spaceflight, Precourt served as pilot on STS-71, the first Shuttle-Mir docking mission in 1995. The 10-day Atlantis mission included the first shuttle-based crew rotation. Precourt commanded his third spaceflight, STS-84 in 1987, the sixth Shuttle-Mir docking mission. Classmate Collins served as pilot on the nine-day Atlantis mission. He commanded his fourth and final space mission, STS-91, the ninth and final Shuttle-Mir docking flight, earning him the honor as the only American astronaut to visit Mir three times. The 10-day mission aboard Discovery took place in 1998. Across his four spaceflights, Precourt logged nearly 39 days in space. He served as chief of the Astronaut Office from October 1998 to November 2002. 

Richard Searfoss 

Born in Michigan, Searfoss graduated from the U.S. Air Force Academy and served as an instructor at the U.S. Air Force Test Pilot School when NASA selected him as an astronaut. On his first spaceflight, Searfoss served as pilot on STS-58, the SLS-2 mission in 1993. Classmates McArthur and Wolf joined him on the flight aboard Columbia, at 14 days then the longest space shuttle mission. In 1996, he once again served as pilot on STS-76, the third Shuttle-Mir docking mission. Classmates Clifford and Sega joined him on the nine-day flight aboard Atlantis. Searfoss commanded his third and final spaceflight, the 16-day STS-90 Neurolab mission aboard Columbia in 1998. Across his three missions, Searfoss logged 39 days in space. 

Ronald Sega 

Ohio native Sega graduated from the U.S. Air Force Academy and worked as a research associate professor of physics at the University of Houston when NASA selected him as an astronaut. On his first spaceflight, he served as a mission specialist aboard STS-60, the first Shuttle-Mir mission. The eight-day mission aboard Discovery took place in 1994. For his second and final spaceflight in 1996, Sega served as a mission specialist on STS-76, the third Shuttle-Mir docking mission. Fellow Hairballs Searfoss and Clifford also flew on the nine-day Atlantis mission. Across his two spaceflights, Sega logged 17.5 days in space. 

Nancy Sherlock Currie 

Born in Delaware, Sherlock grew up in Ohio and worked as a flight simulation engineer at JSC when NASA selected her as an astronaut. On her debut spaceflight, Sherlock flew as a mission specialist on STS-57, the first flight of the Spacehab module in 1993. Fellow classmates Voss and Wisoff joined her on the 10-day mission aboard Endeavour. On her subsequent missions, she flew under her married name of Currie. Her second trip into space took place in 1995, the nine-day STS-70 mission aboard Discovery. Classmate Thomas joined her on this mission to deploy the seventh TDRS satellite. On her third mission, Currie flew as a mission specialist on STS-88, the first space station assembly mission in 1998. Classmate Newman accompanied her on the 12-day Atlantis mission. For her fourth and final spaceflight in 2002, Currie flew on STS-109, the fourth Hubble Space Telescope servicing mission. Classmate Newman once again accompanied her on the 11-day Columbia mission. Across her four spaceflights, Currie logged nearly 42 days in space. 

Donald Thomas 

Ohio native Thomas earned a doctorate in materials science from Cornell University and worked as a materials science engineer at JSC when NASA selected him as an astronaut. For his first flight, he flew as a mission specialist on STS-65, the IML-2 mission aboard Columbia in 1994. Fellow Hairballs Halsell, Chiao, and Walz accompanied Thomas on the nearly 15-day flight, the longest shuttle mission up to that time. His second trip into space took place in 1995, the nine-day STS-70 mission aboard Discovery. Classmate Currie joined him on this mission to deploy the seventh TDRS satellite. Thomas flew his third spaceflight on STS-83 aboard Columbia, the MSL mission in 1997. Because managers cut the flight short after four days due to a fuel cell failure, NASA decided to fly the mission again, with the same crew, later in the year as STS-94, for the full 16-day mission duration. Classmates Halsell and Voss accompanied Thomas on both missions. Across his four missions, Thomas logged 43 days in space. 

Janice Voss 

Ohio native Voss earned a doctorate in aeronautics and astronautics from the Massachusetts Institute of Technology and worked as an integration manager at Orbital Science Corporation in Houston when NASA selected her as an astronaut. On her first spaceflight, Voss flew as a mission specialist on STS-57, the first flight of the Spacehab module in 1993. Fellow classmates Sherlock and Wisoff joined her on the 10-day mission aboard Endeavour. Voss flew as a mission specialist on her second spaceflight, the STS-63 Mir rendezvous mission in 1995, accompanied by classmates Collins and Harris. Voss flew as payload commander on her third spaceflight on STS-83 aboard Columbia, the MSL mission in 1997. Because managers cut the flight short after four days due to a fuel cell failure, NASA decided to refly the mission, with the same crew, later in the year as STS-94, for the full 16-day mission duration. Classmates Halsell and Thomas accompanied Voss on both missions. On her fifth and final spaceflight, Voss once again served as payload commander on STS-99, the Shuttle Radar Topography Mission. The 11-day mission aboard Endeavour took place in 2000. Over her five missions, Voss accumulated 49 days of spaceflight time. 

Carl Walz 

A native of Ohio, Walz worked as a flight test manager at the U.S. Air Force Flight Test Center in Nevada when NASA selected him as an astronaut. He received his first flight assignment as a mission specialist on STS-51, flying with fellow Hairballs Bursch and Newman on the 10-day flight aboard Discovery in 1993. Walz conducted a 7-hour 5-minute spacewalk with Newman to demonstrate future spacewalking techniques. For his second flight, he flew as a mission specialist on STS-65, the IML-2 mission aboard Columbia in 1994. Fellow Hairballs Halsell, Chiao, and Thomas accompanied Walz on the nearly 15-day flight, the longest shuttle mission up to that time. On his third trip into space, he served as a mission specialist on STS-79, the fourth Shuttle-Mir docking mission in 1996. Classmate Wilcutt served as pilot on the 10-day Atlantis mission. For his fourth and final spaceflight, Walz, along with fellow Hairball Bursch, spent 196 days in space as an Expedition 4 flight engineer aboard the space station in 2001 and 2002, conducting two spacewalks totaling 11 hours 50 minutes. He launched on STS-108 and returned on STS-111. Across his four missions, Walz logged more than 230 days in space and spent nearly 19 hours on three spacewalks. 

Terrance Wilcutt 

A native of Kentucky, Wilcutt served in the U.S. Marine Corps and worked as a test pilot at Naval Air Station Patuxent River when NASA selected him as an astronaut. Wilcutt served as pilot on his first spaceflight, STS-68, the 10-day SRL-2 Earth observation mission aboard Endeavour in 1994. Classmates Bursch, Jones, and Wisoff accompanied Wilcutt on the flight. He served as pilot on his second spaceflight, the STS-79 fourth Shuttle-Mir docking mission in 1996. Fellow Hairball Walz accompanied him on the 10-day Atlantis mission. Wilcutt commanded his third mission, STS-89, the eighth Shuttle-Mir docking mission. The nine-day flight aboard Endeavour took place in 1998. He commanded his fourth and final spaceflight in 2000, the STS-106 2A.2b space station assembly and logistics mission. The 12-day mission flew on Atlantis. Across his four missions, Wilcutt logged 42 days in space. He served as the NASA chief of Safety and Mission Assurance from 2011 to 2020. 

Jeff Wisoff 

Virginia native Wisoff earned a doctorate in applied physics from Stanford University and worked as an assistant professor at Rice University when NASA selected him as an astronaut. On his first spaceflight, Wisoff flew as a mission specialist on STS-57, the first flight of the Spacehab module in 1993. Fellow classmates Sherlock and Voss joined him on the 10-day mission aboard Endeavour. He participated in a 5-hour 50-minute spacewalk to demonstrate future spacewalking techniques. Wisoff served as a mission specialist on his second spaceflight, STS-68, the 10-day SRL-2 Earth observation mission aboard Endeavour in 1994. Classmates Bursch, Jones, and Wilcutt accompanied him on the flight. He served as a mission specialist on his third flight, STS-81, the fifth Shuttle-Mir docking mission in 1997. The 10-day flight took place aboard Atlantis. He flew his fourth and final mission on STS-92, the 3A space station assembly mission in 2000 that brought the Z1 truss to the facility. Wisoff participated in two spacewalks totaling 14 hours 3 minutes during the 13-day Discovery mission. Across his four spaceflights, Wisoff logged 44 days in space and spent nearly 20 hours on three spacewalks. 

David Wolf 

A native of Indiana, Wolf earned a medical degree from Indiana University and worked as an aerospace medical officer at JSC when NASA selected him as an astronaut. He received his first spaceflight assignment as a mission specialist on the STS-58 SLS-2 mission in 1993. Classmates Searfoss and McArthur accompanied him on the 14-day Columbia mission, at the time the longest space shuttle flight. For his second trip into space, he completed the 128-day NASA-6 long-duration mission as part of the Shuttle-Mir program in 1997 and 1998, launching aboard STS-86 and returning aboard STS-89. He participated in a 3-hour 52-minute spacewalk. He flew his third spaceflight as a mission specialist on the STS-112 9A space station assembly mission in 2002 that delivered the S1 truss to the orbiting lab. During the 11-day Atlantis mission, Wolf participated in three spacewalks totaling 19 hours 41 minutes. He completed his fourth mission on STS-127 in 2009, earning him the distinction as the last Hairball to make a spaceflight. During the 16-day Endeavour mission that delivered the Japanese module’s exposed pallet to the space station, Wolf participated in three spacewalks totaling 18 hours 24 minutes. Across his four spaceflights, Wolf logged more than 168 days in space and spent 42 hours on seven spacewalks. 

Summary

The NASA Group 13 astronauts made significant contributions to spaceflight. As a group, they completed 85 flights spending 1,960 days, or more than five years, in space, including one long-duration flight aboard Mir and five aboard the International Space Station. One Hairball made a single trip into space, three made two trips, one made three, 15 made four, and three went five times. Twenty-one members of the group contributed their talents on Spacelab or other research missions and three performed work with the great observatories Hubble and Chandra. Thirteen participated in the Shuttle Mir program, with 11 visiting the orbiting facility, one of them twice, another three times, and one completing a long-duration mission. Fifteen visited the International Space Station, five twice, participating in its assembly, research, maintenance, and logistics, with five completing long-duration missions aboard the facility. Eleven of the 23 performed 37 spacewalks spending 242 hours, or more than 10 days, outside their spacecraft.  

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Since launching in 2023, NASA’s Tropospheric Emissions: Monitoring of Pollution mission, or TEMPO, has been measuring the quality of the air we breathe from 22,000 miles above the ground. June 19 marked the successful completion of TEMPO’s 20-month-long initial prime mission, and based on the quality of measurements to date, the mission has been extended through at least September 2026. The TEMPO mission is NASA’s first to use a spectrometer to gather hourly air quality data continuously over North America during daytime hours. It can see details down to just a few square miles, a significant advancement over previous satellites.
      “NASA satellites have a long history of missions lasting well beyond the primary mission timeline. While TEMPO has completed its primary mission, the life for TEMPO is far from over,” said Laura Judd, research physical scientist and TEMPO science team member at NASA’s Langley Research Center in Hampton, Virginia. “It is a big jump going from once-daily images prior to this mission to hourly data. We are continually learning how to use this data to interpret how emissions change over time and how to track anomalous events, such as smoggy days in cities or the transport of wildfire smoke.” 
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      By measuring nitrogen dioxide (NO2) and formaldehyde (HCHO), TEMPO can derive the presence of near-surface ozone. On Aug. 2, 2024 over Houston, TEMPO observed exceptionally high ozone levels in the area. On the left, NO2 builds up in the atmosphere over the city and over the Houston Ship Channel. On the right, formaldehyde levels are seen reaching a peak in the early afternoon. Formaldehyde is largely formed through the oxidation of hydrocarbons, an ingredient of ozone production, such as those that can be emitted by petrochemical facilities found in the Houston Ship Channel. Trent Schindler/NASA's Scientific Visualization Studio When air quality is altered by smog, wildfire smoke, dust, or emissions from vehicle traffic and power plants, TEMPO detects the trace gases that come with those effects. These include nitrogen dioxide, ozone, and formaldehyde in the troposphere, the lowest layer of Earth’s atmosphere.
      “A major breakthrough during the primary mission has been the successful test of data delivery in under three hours with the help of NASA’s Satellite Needs Working Group. This information empowers decision-makers and first responders to issue timely air quality warnings and help the public reduce outdoor exposure during times of higher pollution,” said Hazem Mahmoud, lead data scientist at NASA’s Atmospheric Science Data Center located at Langley Research Center.
      …the substantial demand for TEMPO's data underscores its critical role…
      hazem mahmoud
      NASA Data Scientist
      TEMPO data is archived and distributed freely through the Atmospheric Science Data Center. “The TEMPO mission has set a groundbreaking record as the first mission to surpass two petabytes, or 2 million gigabytes, of data downloads within a single year,” said Mahmoud. “With over 800 unique users, the substantial demand for TEMPO’s data underscores its critical role and the immense value it provides to the scientific community and beyond.” Air quality forecasters, atmospheric scientists, and health researchers make up the bulk of the data users so far.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      On April 14, strong winds triggered the formation of a huge dust storm in the U.S. central plains and fueled the ignition of grassland fires in Oklahoma. On the left, the NO2 plumes originating from the grassland fires are tracked hour-by-hour by TEMPO. Smoke can be discerned from dust as a source since dust is not a source of NO2. The animation on the right shows the ultraviolet (UV) aerosol index, which indicates particulates in the atmosphere that absorb UV light, such as dust and smoke. Trent Schindler/NASA's Scientific Visualization Studio The TEMPO mission is a collaboration between NASA and the Smithsonian Astrophysical Observatory, whose Center for Astrophysics Harvard & Smithsonian oversees daily operations of the TEMPO instrument and produces data products through its Instrument Operations Center.
      Datasets from TEMPO will be expanded through collaborations with partner agencies like the National Oceanic and Atmospheric Administration (NOAA), which is deriving aerosol products that can distinguish between smoke and dust particles and offer insights into their altitude and concentration.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      On May 5, TEMPO measured NO2 emissions over the Twin Cities in the center of Minnesota during morning rush hour. The NO2 increases seen mid-day through the early evening hours are illustrated by the red and black shaded areas at the Red River Valley along the North Dakota state line. These levels are driven by emissions from the soils in agriculturally rich areas. Agricultural soil emissions are influenced by environmental factors like temperature and moisture as well as fertilizer application. Small fires and enhancements from mining activities can also be seen popping up across the region through the afternoon.Trent Schindler/NASA's Scientific Visualization Studio “These datasets are being used to inform the public of rush-hour pollution, air quality alerts, and the movement of smoke from forest fires,” said Xiong Liu, TEMPO’s principal investigator at the Center for Astrophysics Harvard & Smithsonian. “The library will soon grow with the important addition of aerosol products. Users will be able to use these expanded TEMPO products for air quality monitoring, improving forecast models, deriving pollutant amounts in emissions and many other science applications.”
      The TEMPO mission detects and highlights movement of smoke originating from fires burning in Manitoba on June 2. Seen in purple hues are observations made by TEMPO in the ultraviolet spectrum compared to Advanced Baseline Imagers (ABIs) on NOAA’s GOES-R series of weather satellites that do not have the needed spectral coverage. The NOAA GOES-R data paired with NASA’s TEMPO data enhance state and local agencies’ ability to provide near-real-time smoke and dust impacts in local air quality forecasts.NOAA/NESDIS/Center for Satellite Applications and Research “The TEMPO data validation has truly been a community effort with over 20 agencies at the federal and international level, as well as a community of over 200 scientists at research and academic institutions,” Judd added. “I look forward to seeing how TEMPO data will help close knowledge gaps about the timing, sources, and evolution of air pollution from this unprecedented space-based view.”
      An agency review will take place in the fall to assess TEMPO’s achievements and extended mission goals and identify lessons learned that can be applied to future missions.
      The TEMPO mission is part of NASA’s Earth Venture Instrument program, which includes small, targeted science investigations designed to complement NASA’s larger research missions. The instrument also forms part of a virtual constellation of air quality monitors for the Northern Hemisphere which includes South Korea’s Geostationary Environment Monitoring Spectrometer and ESA’s (European Space Agency) Sentinel-4 satellite. TEMPO was built by BAE Systems Inc., Space & Mission Systems (formerly Ball Aerospace). It flies onboard the Intelsat 40e satellite built by Maxar Technologies. The TEMPO Instrument Operations Center and the Science Data Processing Center are operated by the Smithsonian Astrophysical Observatory, part of the Center for Astrophysics | Harvard & Smithsonian in Cambridge.


      For more information about the TEMPO instrument and mission, visit:
      https://science.nasa.gov/mission/tempo/

      About the Author
      Charles G. Hatfield
      Science Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Jul 03, 2025 LocationNASA Langley Research Center Related Terms
      Tropospheric Emissions: Monitoring of Pollution (TEMPO) Earth Earth Science Earth Science Division General Langley Research Center Missions Science Mission Directorate Explore More
      2 min read Hubble Observations Give “Missing” Globular Cluster Time to Shine
      A previously unexplored globular cluster glitters with multicolored stars in this NASA Hubble Space Telescope…
      Article 15 minutes ago 5 min read NASA Advances Pressure Sensitive Paint Research Capability
      Article 1 hour ago 5 min read How NASA’s SPHEREx Mission Will Share Its All-Sky Map With the World 
      NASA’s newest astrophysics space telescope launched in March on a mission to create an all-sky…
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Swept Wing Flow Test model, known as SWiFT, with pressure sensitive paint applied, sports a pink glow under ultraviolet lights while tested during 2023 in a NASA wind tunnel at Langley Research Center in Virginia.NASA / Dave Bowman Many of us grew up using paint-by-number sets to create beautiful color pictures.
      For years now, NASA engineers studying aircraft and rocket designs in wind tunnels have flipped that childhood pastime, using computers to generate images from “numbers-by-paint” – pressure sensitive paint (PSP), that is.
      Now, advances in the use of high-speed cameras, supercomputers, and even more sensitive PSP have made this numbers-by-paint process 10,000 times faster while creating engineering visuals with 1,000 times higher resolution.
      So, what’s the big difference exactly between the “old” capability in use at NASA for more than a decade and the “new?”
      “The key is found by adding a single word in front of PSP, namely ‘unsteady’ pressure sensitive paint, or uPSP,” said E. Lara Lash, an aerospace engineer from NASA’s Ames Research Center in California’s Silicon Valley.
      With PSP, NASA researchers study the large-scale effects of relatively smooth air flowing over the wings and body of aircraft. Now with uPSP, they are able to see in finer detail what happens when more turbulent air is present – faster and better than ever before.
      In some cases with the new capability, researchers can get their hands on the wind tunnel data they’re looking for within 20 minutes. That’s quick enough to allow engineers to adjust their testing in real time.
      Usually, researchers record wind tunnel data and then take it back to their labs to decipher days or weeks later. If they find they need more data, it can take additional weeks or even months to wait in line for another turn in the wind tunnel.
      “The result of these improvements provides a data product that is immediately useful to aerodynamic engineers, structural engineers, or engineers from other disciplines,” Lash said.
      Robert Pearce, NASA’s associate administrator for aeronautics, who recently saw a demonstration of uPSP-generated data displayed at Ames, hailed the new tool as a national asset that will be available to researchers all over the country.
      “It’s a unique NASA innovation that isn’t offered anywhere else,” Pearce said. “It will help us maintain NASA’s world leadership in wind tunnel capabilities.”
      A technician sprays unsteady pressure sensitive paint onto the surface of a small model of the Space Launch System in preparation for testing in a NASA wind tunnel.NASA / Dave Bowman How it Works
      With both PSP and uPSP, a unique paint is applied to scale models of aircraft or rockets, which are mounted in wind tunnels equipped with specific types of lights and cameras.
      When illuminated during tests, the paint’s color brightness changes depending on the levels of pressure the model experiences as currents of air rush by. Darker shades mean higher pressure; lighter shades mean lower pressure.
      Cameras capture the brightness intensity and a supercomputer turns that information into a set of numbers representing pressure values, which are made available to engineers to study and glean what truths they can about the vehicle design’s structural integrity.
      “Aerodynamic forces can vibrate different parts of the vehicle to different degrees,” Lash said. “Vibrations could damage what the vehicle is carrying or can even lead to the vehicle tearing itself apart. The data we get through this process can help us prevent that.”
      Traditionally, pressure readings are taken using sensors connected to little plastic tubes strung through a model’s interior and poking up through small holes in key places, such as along the surface of a wing or the fuselage. 
      Each point provides a single pressure reading. Engineers must use mathematical models to estimate the pressure values between the individual sensors.
      With PSP, there is no need to estimate the numbers. Because the paint covers the entire model, its brightness as seen by the cameras reveals the pressure values over the whole surface.
      A four-percent scale model of the Space Launch System rocket is tested in 2017 using unsteady Pressure Sensitive Paint inside the 11-foot by 11-foot Unitary Plan Wind Tunnel at NASA’s Ames Research Center in California.NASA / Dominic Hart Making it Better
      The introduction, testing, and availability of uPSP is the result of a successful five-year-long effort, begun in 2019, in which researchers challenged themselves to significantly improve the PSP’s capability with its associated cameras and computers.
      The NASA team’s desire was to develop and demonstrate a better process of acquiring, processing, and visualizing data using a properly equipped wind tunnel and supercomputer, then make the tool available at NASA wind tunnels across the country.
      The focus during a capability challenge was on NASA’s Unitary Plan Facility’s 11-foot transonic wind tunnel, which the team connected to the nearby NASA Advanced Supercomputing Facility, both located at Ames.
      Inside the wind tunnel, a scale model of NASA’s Space Launch System rocket served as the primary test subject during the challenge period.
      Now that the agency has completed its Artemis I uncrewed lunar flight test mission, researchers can match the flight-recorded data with the wind tunnel data to see how well reality and predictions compare.
      With the capability challenge officially completed at the end of 2024, the uPSP team is planning to deploy it to other wind tunnels and engage with potential users with interests in aeronautics or spaceflight.
      “This is a NASA capability that we have, not only for use within the agency, but one that we can offer industry, academia, and other government agencies to come in and do research using these new tools,” Lash said.
      NASA’s Aerosciences Evaluation and Test Capabilities portfolio office, an organization managed under the agency’s Aeronautics Research Mission Directorate, oversaw the development of the uPSP capability.
      Watch this uPSP Video
      About the Author
      Jim Banke
      Managing Editor/Senior WriterJim Banke is a veteran aviation and aerospace communicator with more than 40 years of experience as a writer, producer, consultant, and project manager based at Cape Canaveral, Florida. He is part of NASA Aeronautics' Strategic Communications Team and is Managing Editor for the Aeronautics topic on the NASA website.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      6 min read By Air and by Sea: Validating NASA’s PACE Ocean Color Instrument
      Article 1 week ago 3 min read NASA Intern Took Career from Car Engines to Cockpits
      Article 1 week ago 4 min read NASA Tech to Use Moonlight to Enhance Measurements from Space
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Jul 03, 2025 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Aerosciences Evaluation Test Capabilities Ames Research Center Flight Innovation Glenn Research Center Langley Research Center Transformational Tools Technologies
      View the full article
    • By NASA
      NASA Astronauts Send Fourth of July Wishes From the International Space Station
    • By NASA
      The four crew members of NASA’s SpaceX Crew-11 mission to the International Space Station train inside a SpaceX Dragon spacecraft in Hawthorne, California. From left to right: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA astronaut Kimiya Yui.Credit: SpaceX NASA and its partners will discuss the upcoming crew rotation to the International Space Station during a pair of news conferences on Thursday, July 10, from the agency’s Johnson Space Center in Houston.

      First is an overview news conference at 12 p.m. EDT with mission leadership discussing final launch and mission preparations on the agency’s YouTube channel.
      Next, crew will participate in a news conference at 2 p.m. on NASA’s YouTube channel, followed by individual astronaut interviews at 3 p.m. This is the final media opportunity with Crew-11 before they travel to NASA’s Kennedy Space Center in Florida for launch.

      The Crew-11 mission, targeted to launch in late July/early August, will carry NASA astronauts Zena Cardman and Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, and Roscosmos cosmonaut Oleg Platonov to the orbiting laboratory. The crew will launch aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket from Launch Complex 39A.

      United States-based media seeking to attend in person must contact the NASA Johnson newsroom no later than 5 p.m. on Monday, July 7, at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is available online.
      Any media interested in participating in the news conferences by phone must contact the Johnson newsroom by 9:45 a.m. the day of the event. Media seeking virtual interviews with the crew must submit requests to the Johnson newsroom by 5 p.m. on Monday, July 7.

      Briefing participants are as follows (all times Eastern and subject to change based on real-time operations):

      12 p.m.: Mission Overview News Conference
      Steve Stich, manager, Commercial Crew Program, NASA Kennedy Bill Spetch, operations integration manager, International Space Station Program, NASA Johnson NASA’s Space Operations Mission Directorate representative Sarah Walker, director, Dragon Mission Management, SpaceX Mayumi Matsuura, vice president and director general, Human Spaceflight Technology Directorate, JAXA 2 p.m.: Crew News Conference
      Zena Cardman, Crew-11 commander, NASA Mike Fincke, Crew-11 pilot, NASA Kimiya Yui, Crew-11 mission specialist, JAXA Oleg Platonov, Crew-11 mission specialist, Roscosmos 3 p.m.: Crew Individual Interview Opportunities
      Crew-11 members available for a limited number of interviews
      Selected as a NASA astronaut in 2017, Cardman will conduct her first spaceflight. The Williamsburg, Virginia, native holds a bachelor’s degree in Biology and a master’s in Marine Sciences from the University of North Carolina at Chapel Hill. At the time of selection, she was pursuing a doctorate in geosciences. Cardman’s geobiology and geochemical cycling research focused on subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning. Follow @zenanaut on X and @zenanaut on Instagram.

      This will be Fincke’s fourth trip to the space station, having logged 382 days in space and nine spacewalks during Expedition 9 in 2004, Expedition 18 in 2008, and STS-134 in 2011, the final flight of space shuttle Endeavour. Throughout the past decade, Fincke has applied his expertise to NASA’s Commercial Crew Program, advancing the development and testing of the SpaceX Dragon spacecraft and Boeing Starliner spacecraft toward operational certification. The Emsworth, Pennsylvania, native is a graduate of the United States Air Force Test Pilot School and holds bachelors’ degrees from the Massachusetts Institute of Technology, Cambridge, in both aeronautics and astronautics, as well as Earth, atmospheric and planetary sciences. He also has a master’s degree in aeronautics and astronautics from Stanford University in California. Fincke is a retired U.S. Air Force colonel with more than 2,000 flight hours in over 30 different aircraft. Follow @AstroIronMike on X and Instagram.

      With 142 days in space, this will be Yui’s second trip to the space station. After his selection as a JAXA astronaut in 2009, Yui flew as a flight engineer for Expedition 44/45 and became the first Japanese astronaut to capture JAXA’s H-II Transfer Vehicle using the station’s robotic arm. In addition to constructing a new experimental environment aboard Kibo, he conducted a total of 21 experiments for JAXA. In November 2016, Yui was assigned as chief of the JAXA Astronaut Group. He graduated from the School of Science and Engineering at the National Defense Academy of Japan in 1992. He later joined the Air Self-Defense Force at the Japan Defense Agency (currently the Ministry of Defense). In 2008, Yui joined the Air Staff Office at the Ministry of Defense as a lieutenant colonel. Follow @astro_kimiya on X.

      The Crew-11 mission also will be Platonov’s first spaceflight. Before his selection as a cosmonaut in 2018, Platonov earned a degree in engineering from Krasnodar Air Force Academy in aircraft operations and air traffic management. He also earned a bachelor’s degree in state and municipal management in 2016 from the Far Eastern Federal University in Vladivostok, Russia. Assigned as a test cosmonaut in 2021, he has experience in piloting aircraft, zero gravity training, scuba diving, and wilderness survival.
      For more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Claire O’Shea / Joshua Finch
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / Joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jul 02, 2025 LocationNASA Headquarters Related Terms
      Humans in Space ISS Research Opportunities For International Participants to Get Involved View the full article
    • By NASA
      5 min read
      How NASA’s SPHEREx Mission Will Share Its All-Sky Map With the World 
      NASA’s SPHEREx mission will map the entire sky in 102 different wavelengths, or colors, of infrared light. This image of the Vela Molecular Ridge was captured by SPHEREx and is part of the mission’s first ever public data release. The yellow patch on the right side of the image is a cloud of interstellar gas and dust that glows in some infrared colors due to radiation from nearby stars. NASA/JPL-Caltech NASA’s newest astrophysics space telescope launched in March on a mission to create an all-sky map of the universe. Now settled into low-Earth orbit, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) has begun delivering its sky survey data to a public archive on a weekly basis, allowing anyone to use the data to probe the secrets of the cosmos.
      “Because we’re looking at everything in the whole sky, almost every area of astronomy can be addressed by SPHEREx data,” said Rachel Akeson, the lead for the SPHEREx Science Data Center at IPAC. IPAC is a science and data center for astrophysics and planetary science at Caltech in Pasadena, California.
      Almost every area of astronomy can be addressed by SPHEREx data.
      Rachel Akeson
      SPHEREx Science Data Center Lead
      Other missions, like NASA’s now-retired WISE (Wide-field Infrared Survey Explorer), have also mapped the entire sky. SPHEREx builds on this legacy by observing in 102 infrared wavelengths, compared to WISE’s four wavelength bands.
      By putting the many wavelength bands of SPHEREx data together, scientists can identify the signatures of specific molecules with a technique known as spectroscopy. The mission’s science team will use this method to study the distribution of frozen water and organic molecules — the “building blocks of life” — in the Milky Way.
      This animation shows how NASA’s SPHEREx observatory will map the entire sky — a process it will complete four times over its two-year mission. The telescope will observe every point in the sky in 102 different infrared wavelengths, more than any other all-sky survey. SPHEREx’s openly available data will enable a wide variety of astronomical studies. Credit: NASA/JPL-Caltech The SPHEREx science team will also use the mission’s data to study the physics that drove the universe’s expansion following the big bang, and to measure the amount of light emitted by all the galaxies in the universe over time. Releasing SPHEREx data in a public archive encourages far more astronomical studies than the team could do on their own.
      “By making the data public, we enable the whole astronomy community to use SPHEREx data to work on all these other areas of science,” Akeson said.
      NASA is committed to the sharing of scientific data, promoting transparency and efficiency in scientific research. In line with this commitment, data from SPHEREx appears in the public archive within 60 days after the telescope collects each observation. The short delay allows the SPHEREx team to process the raw data to remove or flag artifacts, account for detector effects, and align the images to the correct astronomical coordinates.
      The team publishes the procedures they used to process the data alongside the actual data products. “We want enough information in those files that people can do their own research,” Akeson said.
      One of the early test images captured by NASA’s SPHEREx mission in April 2025. This image shows a section of sky in one infrared wavelength, or color, that is invisible to the human eye but is represented here in a visible color. This particular wavelength (3.29 microns) reveals a cloud of dust made of a molecule similar to soot or smoke. NASA/JPL-Caltech This image from NASA’s SPHEREx shows the same region of space in a different infrared wavelength (0.98 microns), once again represented by a color that is visible to the human eye. The dust cloud has vanished because the molecules that make up the dust — polycyclic aromatic hydrocarbons — do not radiate light in this color. NASA/JPL-Caltech




      During its two-year prime mission, SPHEREx will survey the entire sky twice a year, creating four all-sky maps. After the mission reaches the one-year mark, the team plans to release a map of the whole sky at all 102 wavelengths.
      In addition to the science enabled by SPHEREx itself, the telescope unlocks an even greater range of astronomical studies when paired with other missions. Data from SPHEREx can be used to identify interesting targets for further study by NASA’s James Webb Space Telescope, refine exoplanet parameters collected from NASA’s TESS (Transiting Exoplanet Survey Satellite), and study the properties of dark matter and dark energy along with ESA’s (European Space Agency’s) Euclid mission and NASA’s upcoming Nancy Grace Roman Space Telescope.
      The SPHEREx mission’s all-sky survey will complement data from other NASA space telescopes. SPHEREx is illustrated second from the right. The other telescope illustrations are, from left to right: the Hubble Space Telescope, the retired Spitzer Space Telescope, the retired WISE/NEOWISE mission, the James Webb Space Telescope, and the upcoming Nancy Grace Roman Space Telescope. NASA/JPL-Caltech The IPAC archive that hosts SPHEREx data, IRSA (NASA/IPAC Infrared Science Archive), also hosts pointed observations and all-sky maps at a variety of wavelengths from previous missions. The large amount of data available through IRSA gives users a comprehensive view of the astronomical objects they want to study.
      “SPHEREx is part of the entire legacy of NASA space surveys,” said IRSA Science Lead Vandana Desai. “People are going to use the data in all kinds of ways that we can’t imagine.”
      NASA’s Office of the Chief Science Data Officer leads open science efforts for the agency. Public sharing of scientific data, tools, research, and software maximizes the impact of NASA’s science missions. To learn more about NASA’s commitment to transparency and reproducibility of scientific research, visit science.nasa.gov/open-science. To get more stories about the impact of NASA’s science data delivered directly to your inbox, sign up for the NASA Open Science newsletter.
      By Lauren Leese
      Web Content Strategist for the Office of the Chief Science Data Officer 
      More About SPHEREx
      The SPHEREx mission is managed by NASA’s Jet Propulsion Laboratory for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems in Boulder, Colorado, built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech in Pasadena managed and integrated the instrument. The mission’s principal investigator is based at Caltech with a joint JPL appointment. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
      To learn more about SPHEREx, visit:
      https://nasa.gov/SPHEREx
      Media Contacts
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      Amanda Adams
      Office of the Chief Science Data Officer
      256-683-6661
      amanda.m.adams@nasa.gov
      Share








      Details
      Last Updated Jul 02, 2025 Related Terms
      Open Science Astrophysics Galaxies Jet Propulsion Laboratory SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) The Search for Life The Universe Explore More
      3 min read Discovery Alert: Flaring Star, Toasted Planet


      Article


      4 hours ago
      11 min read 3 Years of Science: 10 Cosmic Surprises from NASA’s Webb Telescope


      Article


      5 hours ago
      7 min read A New Alloy is Enabling Ultra-Stable Structures Needed for Exoplanet Discovery


      Article


      1 day ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...