Members Can Post Anonymously On This Site
Exoplanets Need to Be Prepared for Extreme Space Weather, Chandra Finds
-
Similar Topics
-
By European Space Agency
Image: The ranges and valleys of the Swiss Alps stand out in this image captured by the Copernicus Sentinel-2 mission in December 2024. View the full article
-
By European Space Agency
Image: The ranges and valleys of the Swiss Alps stand out in this image captured by the Copernicus Sentinel-2 mission in December 2024. View the full article
-
By NASA
4 min read
What You Need To Know About the March 2025 Total Lunar Eclipse
The Moon will pass into Earth’s shadow and appear to turn red on the night of March 13 or early in the morning of March 14, depending on time zone. Here’s what you need to know about the total lunar eclipse.
The March 2025 total lunar eclipse will take place between late night on March 13 and early morning on March 14 across several time zones. In this data visualization, the Moon moves from right to left, passing through Earth’s shadow and leaving in its wake an eclipse diagram with the times (in UTC) at various stages of the eclipse. Credit: NASA’s Scientific Visualization Studio What is a lunar eclipse?
A lunar eclipse occurs when the Sun, Earth, and Moon align so that the Moon passes into Earth’s shadow. In a total lunar eclipse, the entire Moon falls within the darkest part of Earth’s shadow, called the umbra. When the Moon is within the umbra, it turns red-orange. Lunar eclipses are sometimes called “Blood Moons” because of this phenomenon.
Alignment of the Moon, Earth, and Sun during a lunar eclipse (not to scale). NASA’s Scientific Visualization Studio How can I observe the eclipse?
You don’t need any special equipment to observe a lunar eclipse, although binoculars or a telescope will enhance the view. A dark environment away from bright lights makes for the best viewing conditions.
This eclipse will be visible from Earth’s Western Hemisphere.
Map showing where the March 13-14, 2025 lunar eclipse is visible. Contours mark the edge of the visibility region at eclipse contact times, labeled in UTC. NASA’s Scientific Visualization Studio What can I expect to observe?
Milestone: What’s happening: Penumbral eclipse begins (8:57pm PDT, 11:57pm EDT, 03:57 UTC) The Moon enters the Earth’s penumbra, the outer part of the shadow. The Moon begins to dim, but the effect is quite subtle. Partial eclipse begins (10:09pm PDT, 1:09am EDT, 05:09 UTC) The Moon begins to enter Earth’s umbra and the partial eclipse begins. To the naked eye, as the Moon moves into the umbra, it looks like a bite is being taken out of the lunar disk. The part of the Moon inside the umbra will appear very dark. Totality begins (11:26pm PDT, 2:26am EDT, 06:26 UTC) The entire Moon is now in the Earth’s umbra. The Moon will turn a coppery-red. Try binoculars or a telescope for a better view. If you want to take a photo, use a camera on a tripod with exposures of at least several seconds. Totality ends (12:31am PDT, 3:31am EDT, 07:31 UTC) As the Moon exits Earth’s umbra, the red color fades. It will look as if a bite is being taken out of the opposite side of the lunar disk as before. Partial eclipse ends (1:47am PDT, 4:47am EDT, 08:47 UTC) The whole Moon is in Earth’s penumbra, but again, the dimming is subtle. Penumbral eclipse ends (3:00am PDT, 6:00am EDT, 10:00 UTC) The eclipse is over. Data visualization showing a telescopic view of the Moon as the March 2025 total lunar eclipse unfolds. Credit: NASA’s Scientific Visualization Studio Why does the Moon turn red during a lunar eclipse?
The same phenomenon that makes our sky blue and our sunsets red causes the Moon to turn reddish-orange during a lunar eclipse. Sunlight appears white, but it actually contains a rainbow of components—and different colors of light have different physical properties. Blue light scatters relatively easily as it passes through Earth’s atmosphere. Reddish light, on the other hand, travels more directly through the air.
When the Sun is high on a clear day, we see blue light scattered throughout the sky overhead. At sunrise and sunset, when the Sun is near the horizon, incoming sunlight travels a longer, low-angle path through Earth’s atmosphere to observers on the ground. The bluer part of the sunlight scatters away in the distance (where it’s still daytime), and only the yellow-to-red part of the spectrum reaches our eyes.
During a lunar eclipse, the Moon appears red or orange because any sunlight that’s not blocked by our planet is filtered through a thick slice of Earth’s atmosphere on its way to the lunar surface. It’s as if all the world’s sunrises and sunsets are projected onto the Moon.
During a total lunar eclipse, the Moon is reddened by sunlight filtered through Earth’s atmosphere. NASA’s Scientific Visualization Studio What else can I observe on the night of the eclipse?
Look to the western sky on the night of the eclipse for a glimpse of planets Jupiter and Mars. The Moon will be in the constellation Leo, under the lion’s hind paw, at the beginning of the eclipse; soon afterward, it will cross into the constellation Virgo. As Earth’s shadow dims the Moon’s glow, constellations may be easier to spot than usual.
Visit our What’s Up guide for monthly skywatching tips, and find lunar observing recommendations for each day of the year in our Daily Moon Guide.
Read more: The Moon and Eclipses
Writers: Caela Barry, Ernie Wright, and Molly Wasser
Share
Details
Last Updated Feb 06, 2025 Related Terms
Earth’s Moon Skywatching The Solar System Explore More
5 min read NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm
Article
4 hours ago
5 min read Planetary Alignments and Planet Parades
Article
2 days ago
4 min read What’s Up: February 2025 Skywatching Tips from NASA
Article
6 days ago
Keep Exploring Discover More Topics From NASA
The Moon and Eclipses
There are two types of eclipses: lunar and solar. During a lunar eclipse, Earth’s shadow obscures the Moon. In a…
Solar Wind on the Moon
As you read this, the Sun is blasting charged particles (electrons, protons, and other ions) out into the solar system.…
Earth’s Moon
The Moon makes Earth more livable, sets the rhythm of ocean tides, and keeps a record of our solar system’s…
Skywatching
View the full article
-
By NASA
5 min read
NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm
Key Points
The May 2024 solar storm created two new temporary belts of high-energy particles surrounding Earth. Such belts have been seen before, but the new ones were particularly long lasting, especially the new proton belt. The findings are particularly important for spacecraft launching into geostationary orbits, which can be damaged as they traverse the dangerous belts. The largest solar storm in two decades hit Earth in May 2024. For several days, wave after wave of high-energy charged particles from the Sun rocked the planet. Brilliant auroras engulfed the skies, and some GPS communications were temporarily disrupted.
With the help of a serendipitously resurrected small NASA satellite, scientists have discovered that this storm also created two new temporary belts of energetic particles encircling Earth. The findings are important to understanding how future solar storms could impact our technology.
The new belts formed between two others that permanently surround Earth called the Van Allen Belts. Shaped like concentric rings high above Earth’s equator, these permanent belts are composed of a mix of high-energy electrons and protons that are trapped in place by Earth’s magnetic field. The energetic particles in these belts can damage spacecraft and imperil astronauts who pass through them, so understanding their dynamics is key to safe spaceflight.
The May 2024 solar storm created two extra radiation belts, sandwiched between the two permanent Van Allen Belts. One of the new belts, shown in purple, included a population of protons, giving it a unique composition that hadn’t been seen before. NASA/Goddard Space Flight Center/Kristen Perrin The discovery of the new belts, made possible by NASA’s Colorado Inner Radiation Belt Experiment (CIRBE) satellite and published Feb. 6, 2025, in the Journal of Geophysical Research: Space Physics, is particularly important for protecting spacecraft launching into geostationary orbits, since they travel through the Van Allen Belts several times before reaching their final orbit.
New Belts Amaze Scientists
Temporary belts have been detected in the aftermath of large solar storms before. But while previous belts have been composed mostly of electrons, the innermost of the two new belts also included energetic protons. This unique composition is likely due to the strength and composition of the solar storm.
“When we compared the data from before and after the storm, I said, ‘Wow, this is something really new,’” said the paper’s lead author Xinlin Li, a professor at the Laboratory for Atmospheric and Space Physics (LASP) and Department of Aerospace Engineering Sciences at the University of Colorado Boulder. “This is really stunning.”
The new belts also seem to have lasted much longer than previous belts. Whereas previous temporary belts lasted around four weeks, the new belt composed primary of electrons lasted more than three months. The other belt, that also includes protons, has lasted much longer than the electron belt because it is in a more stable region and is less prone to the physical processes that can knock the particles out of orbit. It is likely still there today.
“These are really high-energy electrons and protons that have found their way into Earth’s inner magnetic environment,” said David Sibeck, former mission scientist for NASA’s Van Allen Probes and research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who was not involved with the new study. “Some might stay in this place for a very long time.”
How long such belts stick around depends on passing solar storms. Large storms can provide the energy to knock particles in these belts out of their orbits and send them spiraling off into space or down to Earth. One such storm at the end of June significantly decreased the size of the new electron belt and another in August nearly erased the remainder of that electron belt, though a small population of high-energy electrons endured.
CubeSat Fortuitously Comes Back to Life to Make the Discovery
The new discovery was made by NASA’s CIRBE satellite, a CubeSat about the size of a shoebox that circled the planet’s magnetic poles in a low Earth orbit from April 2023 to October 2024. CIRBE housed an instrument called the Relativistic Electron Proton Telescope integrated little experiment-2 (REPTile-2) — a miniaturized and upgraded version of an instrument that flew aboard NASA’s Van Allen Probes, which made the first discovery of a temporary electron belt in 2013.
The CIRBE CubeSat in the laboratory before launch. CIRBE was designed and built by LASP at the University of Colorado Boulder. Xinlin Li/LASP/CU Boulder After a year in space, the CubeSat experienced an anomaly and unexpectedly went quiet on April 15, 2024. The scientists were disappointed to miss the solar storm in May but were able to rely on other spacecraft to provide some preliminary data on the electron belt. Luckily, on June 15, the spacecraft sprang back to life and resumed taking measurements. The data provided high-resolution information that couldn’t be gleaned by any other instrument and allowed the scientists to understand the magnitude of the new belts.
“Once we resumed measurements, we were able to see the new electron belt, which wasn’t visible in the data from other spacecraft,” Li said.
Having the CubeSat in orbit to measure the effect of the solar storm has been bittersweet, Li said. While it provided the opportunity to measure the effects of such a large event, the storm also increased atmospheric drag on the CubeSat, which caused its orbit to decrease prematurely. As a result, the CubeSat deorbited in October 2024. However, the spacecraft’s data makes it all worth it.
“We are very proud that our very small CubeSat made such a discovery,” Li said.
CIRBE was designed and built by LASP at the University of Colorado Boulder and was launched through NASA’s CubeSat Launch Initiative (CSLI). The mission is sponsored by NASA’s Heliophysics Flight Opportunities for Research & Technology (H-FORT) program.
By Mara Johnson-Groh
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Feb 06, 2025 Related Terms
Heliophysics CubeSats Goddard Space Flight Center Heliophysics Division Ionosphere Space Weather The Sun Van Allen Probes Explore More
5 min read Straight Shot: Hubble Investigates Galaxy with Nine Rings
Article
2 days ago
2 min read Hubble Spots a Supernova
Article
6 days ago
2 min read Hubble Studies the Tarantula Nebula’s Outskirts
Article
2 weeks ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.