Jump to content

55 Years Ago: Apollo 13 Prepares for Third Moon Landing 


Recommended Posts

  • Publishers
Posted

Following the historic year of 1969 that saw two successful Moon landings, 1970 opened on a more sober note. Ever-tightening federal budgets forced NASA to rescope its future lunar landing plans. The need for a Saturn V to launch an experimental space station in 1972 forced the cancellation of the final Moon landing mission and an overall stretching out of the Moon landing flights. Apollo 13 slipped to April, but the crew of James Lovell, Thomas “Ken” Mattingly, and Fred W. Haise and their backups John Young, John “Jack” Swigert, and Charles Duke continued intensive training for the landing at Fra Mauro. Training included practicing their surface excursions and water egress, along with time in spacecraft simulators. The three stages of the Apollo 14 Saturn V arrived at the launch site and workers began the stacking process for that mission now planned for October 1970. Scientists met in Houston to review the preliminary findings from their studies of the lunar samples returned by Apollo 11. 

Apollo Program Changes 

On Jan. 4, 1970, NASA Deputy Administrator George Low announced the cancellation of Apollo 20, the final planned Apollo Moon landing mission. The agency needed the Saturn V rocket that would have launched Apollo 20 to launch the Apollo Applications Program (AAP) experimental space station, renamed Skylab in February 1970. Since previous NASA Administrator James Webb had precluded the building of any additional Saturn V rockets in 1968, this proved the only viable yet difficult solution.  

In other program changes, on Jan. 13 NASA Administrator Thomas Paine addressed how NASA planned to deal with ongoing budgetary challenges. Lunar landing missions would now occur every six months instead of every four, and with the slip of Apollo 13 to April, Apollo 14 would now fly in October instead of July. Apollo 15 and 16 would fly in 1971, then AAP would launch in 1972, and three successive crews would spend, 28, 56, and 56 days aboard the station. Lunar landing missions would resume in 1973, with Apollo 17, 18, and 19 closing out the program by the following year. 

In addition to programmatic changes, several key management changes took place at NASA in January 1970. On Nov. 26, 1969, Christopher Kraft , the director of flight operations at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, assumed the position of MSC deputy director. On Dec. 28, MSC Director Robert Gilruth named Sigurd “Sig” Sjoberg, deputy director of flight operations since 1963, to succeed Kraft. At NASA Headquarters in Washington, D.C., Associate Administrator for Manned Space Flight George Mueller resigned his position effective Dec. 10, 1969. To replace Mueller, on Jan. 8, NASA Administrator Paine named Dale Myers, vice president and general manager of the space shuttle program at North American Rockwell Corporation. On Jan. 27, Paine announced that Wernher von Braun, designer of the Saturn family of rockets and director of the Marshall Space Flight Center in Huntsville, Alabama, since its establishment in 1960, would move to NASA Headquarters and assume the position of deputy associate administrator for planning. 

Apollo 11 Lunar Science Symposium 

Between Jan. 5 and 8, 1970, several hundred scientists, including all 142 U.S. and international principal investigators provided with Apollo 11 samples, gathered in downtown Houston’s Albert Thomas Exhibit and Convention Center for the Apollo 11 Lunar Science Conference. During the conference, the scientists discussed the chemistry, mineralogy, and petrology of the lunar samples, the search for carbon compounds and any evidence of organic material, the results of dating of the samples, and the results returned by the Early Apollo Surface Experiments Package (EASEP). Senior NASA managers including Administrator Paine, Deputy Administrator Low, and Apollo Program Director Rocco Petrone attended the conference, and Apollo 11 astronaut Edwin “Buzz” Aldrin gave a keynote speech at a dinner reception. The prestigious journal Science dedicated its Jan. 30, 1970, edition to the papers presented at the conference, dubbing it “The Moon Issue”. The Lunar Science Conference evolved into an annual event, renamed the Lunar and Planetary Science Conference in 1978, and continues to attract scientists from around the world to discuss the latest developments in lunar and planetary exploration. 

Apollo 12 

On New Year’s Day 1970, Apollo 12 astronauts Charles “Pete” Conrad, Richard Gordon, and Alan Bean led the 81st annual Tournament of Roses Parade in Pasadena, California, as Grand Marshals. Actress June Lockhart, an avid space enthusiast, interviewed them during the TV broadcast of the event. As President Richard Nixon had earlier requested, Conrad, Gordon, and Bean and their wives paid a visit to former President Lyndon B. Johnson and First Lady Lady Bird Johnson at their ranch near Fredericksburg, Texas, on Jan. 14, 1970. The astronauts described their mission to the former President and Mrs. Johnson.  

Managers released the Apollo 12 Command Module (CM) Yankee Clipper from quarantine and shipped it back to its manufacturer, the North American Rockwell plant in Downey, California, on Jan. 12. Engineers there completed a thorough inspection of the spacecraft and eventually prepared it for public display. NASA transferred Yankee Clipper to the Smithsonian Institution in 1973, and today the capsule resides at the Virginia Air & Space Center in Hampton, Virginia. NASA also released from quarantine the lunar samples and the parts of the Surveyor 3 spacecraft returned by the Apollo 12 astronauts. The scientists received their allocated samples in mid-February, while after initial examination in the Lunar Receiving Laboratory (LRL) the Surveyor parts arrived at NASA’s Jet Propulsion Laboratory in Pasadena, California, for detailed analysis. 

Apollo 13 

As the first step in the programmatic rescheduling of all Moon landings, on Jan. 7, NASA announced the delay of the Apollo 13 launch from March 12 to April 11. The Saturn V rocket topped with the Apollo spacecraft had rolled out the previous December to Launch Pad 39A where workers began tests on the vehicle. The prime crew of Lovell, Mattingly, and Haise, and their backups Young, Swigert, and Duke, continued to train for the 10-day mission to land in the Fra Mauro region of the Moon.  

Apollo 13 prime crew members Lovell, Mattingly, and Haise completed their water egress training in the Gulf of Mexico near the coast of Galveston, Texas, on Jan. 24. With support from the Motorized Vessel Retriever, the three astronauts entered a boilerplate Apollo CM. Sailors lowered the capsule into the water, first in the Stable 2 or apex down position. Three self-inflating balloons righted the spacecraft into the Stable 1 apex up position within a few minutes. With assistance from the recovery team, Lovell, Mattingly, and Haise exited the spacecraft onto a life raft. A helicopter lifted them out of the life rafts using Billy Pugh nets and returned them to Retriever. Later that day, the astronauts returned to the MSC to examine Moon rocks in the LRL that the Apollo 12 astronauts had returned the previous November. 

During their 33.5 hours on the Moon’s surface, Lovell and Haise planned to conduct two four-hour spacewalks to set up the Apollo Lunar Surface Experiment Package (ALSEP), a suite of five investigations designed to collect data about the lunar environment after the astronauts’ departure, and to conduct geologic explorations of the landing site. Mattingly planned to remain in the Command and Service Module (CSM), conducting geologic observations from lunar orbit including photographing potential future landing sites. Lovell and Haise conducted several simulations of the spacewalk timelines, including setting up the ALSEP equipment, practicing taking core samples, and photographing their activities for documentation purposes. They and their backups conducted practice sessions with the partial gravity simulator, also known as POGO, an arrangement of harnesses and servos that simulated walking in the lunar one-sixth gravity. Lovell and Young completed several flights in the Lunar Landing Training Vehicle (LLTV) that simulated the flying characteristics of the Lunar Module (LM) for the final several hundred feet of the descent to the surface. 

In the LRL, technicians prepared the Apollo Lunar Sample Return Containers (ALSRC), or rock boxes, for Apollo 13. Like all missions, Apollo 13 carried two ALSRCs, with each box and lid manufactured from a single block of aluminum. Workers placed sample containers and bags and two 2-cm core sample tubes inside the two ALSRCs. Once loaded, technicians sealed the boxes under vacuum conditions so that they would not contain pressure greater than lunar ambient conditions. Engineers at MSC prepared the American flag that Lovell and Haise planned to plant on the Moon for stowage on the LM’s forward landing strut. 

Apollo 14 

As part of the rescheduling of Moon missions, NASA delayed the launch of the next flight, Apollo 14, from July to October 1970. The CSM and the LM had arrived at NASA’s Kennedy Space Center (KSC) in Florida late in 1969 and technicians conducted tests on the vehicles in the Manned Spacecraft Operations Building (MSOB). On Jan. 12, workers lowered the ascent stage of the LM onto the CSM to perform a docking test – the next time the two vehicles docked they would be on the way to the Moon and the test verified their compatibility. Workers mated the two stages of the LM on Jan. 20. 

The three stages of the Apollo 14 Saturn V arrived in KSC’s cavernous Vehicle Assembly Building (VAB) in mid-January and while workers stacked the first stage on its Mobile Launch Platform on Jan. 14, they delayed stacking the remainder of the rocket stages until May 1970. That decision proved fortunate, since engineers needed to modify the second stage engines following the pogo oscillations experienced during the Apollo 13 launch. 

Apollo 14 astronauts Alan Shepard, Stuart Roosa, and Edgar Mitchell and their backups Eugene Cernan, Ronald Evans, and Joe Engle continued training for their mission. In addition to working in spacecraft simulators, Shepard, Mitchell, Cernan, and Engle conducted suited vacuum chamber runs in MSC’s Space Environmental Simulation Laboratory (SESL) and completed their first familiarization with deploying their suite of ALSEP investigations.  

The Apollo 14 astronauts made the first use of the Modular Equipment Transporter (MET), a golf-cart like wheeled conveyance to transport their tools and lunar samples. A team led by project design engineer William Creasy developed the MET based on recommendations from the first two Moon landing crews on how to improve efficiency on the lunar surface. Creasy and his team demonstrated the MET to Sally LaMere, editor of The Roundup, MSC’s employee newsletter. Three support astronauts, William Pogue, Anthony “Tony” England, and Gordon Fullerton tested the MET prototype in simulated one-sixth lunar gravity during parabolic aircraft flights.   

To be continued … 

News from around the world in January 1970: 

January 1 – President Richard Nixon signs the National Environmental Protection Act into law. 

January 4 – The Beatles hold their final recording session at Abbey Road Studios in London. 

January 5 – Daytime soap opera All My Children premieres. 

January 11 – The Kansas City Chiefs beat the Minnesota Vikings 23-7 in Super Bowl IV, played in Tulane Stadium in New Orleans. 

January 22 – Pan American Airlines flies the first scheduled commercial Boeing-747 flight from New York to London. 

January 14 – Diana Ross and the Supremes perform their final concert in Las Vegas. 

January 25 – The film M*A*S*H, directed by Robert Altman, premieres. 

January 26 – Simon & Garfunkel release Bridge Over Troubled Water, their fifth and final album. 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      View of the Moon - February 5th
    • By NASA
      NASA This Feb. 5, 1971, photo gives an excellent view of the Apollo 14 lunar module on the Moon’s surface after landing. At left, we can see that the astronauts – Alan Shepard and Edgar Mitchell – deployed the U.S. flag before taking this photo of the lunar module.
      Shepard and Mitchell touched down in the Fra Mauro highlands region and conducted two moonwalks lasting more than nine hours in total. They set up an experiment package and collected 93 pounds of rock and soil samples to return to waiting scientists on Earth. In the meantime, astronaut Stuart Roosa, who remained in orbit aboard the command module, conducted observations and photography of the lunar surface from orbit. After their 33-hour lunar surface stay, Shepard and Mitchell rejoined Roosa in orbit, and left lunar orbit for the three-day return trip to Earth.
      Image credit: NASA
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Launch of Blue Origin’s New Shepard suborbital rocket system on Feb. 4, 2025. During the flight test, the capsule at the top detached from the booster and spun at approximately 11 rpm to simulate lunar gravity for the NASA-supported payloads inside.Blue Origin The old saying — “Practice makes perfect!” — applies to the Moon too. On Tuesday, NASA gave 17 technologies, instruments, and experiments the chance to practice being on the Moon… without actually going there. Instead, it was a flight test aboard a vehicle adapted to simulate lunar gravity for approximately two minutes.
      The test began on February 4, 2025, with the 10:00 a.m. CST launch of Blue Origin’s New Shepard reusable suborbital rocket system in West Texas. With support from NASA’s Flight Opportunities program, the company, headquartered in Kent, Washington, enhanced the flight capabilities of its New Shepard capsule to replicate the Moon’s gravity — which is about one-sixth of Earth’s — during suborbital flight.
      “Commercial companies are critical to helping NASA prepare for missions to the Moon and beyond,” said Danielle McCulloch, program executive of the agency’s Flight Opportunities program. “The more similar a test environment is to a mission’s operating environment, the better. So, we provided substantial support to this flight test to expand the available vehicle capabilities, helping ensure technologies are ready for lunar exploration.”
      NASA’s Flight Opportunities program not only secured “seats” for the technologies aboard this flight — for 16 payloads inside the capsule plus one mounted externally — but also contributed to New Shepard’s upgrades to provide the environment needed to advance their readiness for the Moon and other space exploration missions.
      “An extended period of simulated lunar gravity is an important test regime for NASA,” said Greg Peters, program manager for Flight Opportunities. “It’s crucial to reducing risk for innovations that might one day go to the lunar surface.”
      One example is the LUCI (Lunar-g Combustion Investigation) payload, which seeks to understand material flammability on the Moon compared to Earth. This is an important component of astronaut safety in habitats on the Moon and could inform the design of potential combustion devices there. With support from the Moon to Mars Program Office within the Exploration Systems Development Mission Directorate, researchers at NASA’s Glenn Research Center in Cleveland, together with Voyager Technologies, designed LUCI to measure flame propagation directly during the Blue Origin flight.
      The rest of the NASA-supported payloads on this Blue Origin flight included seven from NASA’s Game Changing Development program that seek to mitigate the impact of lunar dust and to perform construction and excavation on the lunar surface. Three other NASA payloads tested instruments to detect subsurface water on the Moon as well as to study flow physics and phase changes in lunar gravity. Rounding out the manifest were payloads from Draper, Honeybee Robotics, Purdue University, and the University of California in Santa Barbara.
      Flight Opportunities is part of the agency’s Space Technology Mission Directorate and is managed at NASA’s Armstrong Flight Research Center.
      By Nancy Pekar, NASA’s Flight Opportunities program
      Keep Exploring Discover More …
      Space Technology Mission Directorate
      Armstrong Flight Research Center
      Flight Opportunities
      Game Changing Development
      Share
      Details
      Last Updated Feb 04, 2025 EditorLoura HallContactNancy J. Pekarnancy.j.pekar@nasa.gov Related Terms
      Ames Research Center Armstrong Flight Research Center Artemis Flight Opportunities Program Game Changing Development Program Space Technology Mission Directorate View the full article
    • By NASA
      NASA’s VIPER (Volatiles Investigating Polar Exploration Rover) sits outside a testing chamber after completing its thermal vacuum testing in the fall of 2024. Credit: NASA/JSC David DeHoyos To advance plans of securing a public/private partnership and land and operate NASA’s VIPER (Volatiles Investigating Polar Exploration Rover) mission on the Moon in collaboration with industry the agency announced Monday it is seeking U.S. proposals. As part of the agency’s Artemis campaign, instruments on VIPER will demonstrate U.S. industry’s ability to search for ice on the lunar surface and collect science data.
      The Announcement for Partnership Proposal contains proposal instructions and evaluation criteria for a new Lunar Volatiles Science Partnership. Responses are due Thursday, Feb. 20. After evaluating submissions, any selections by the agency will require respondents to submit a second, more detailed, proposal. NASA is expected to make a decision on the VIPER mission this summer.
      “Moving forward with a VIPER partnership offers NASA a unique opportunity to engage with the private sector,” said Nicky Fox, associate administrator in the Science Mission Directorate at NASA Headquarters in Washington. “Such a partnership provides the opportunity for NASA to collect VIPER science that could tell us more about water on the Moon, while advancing commercial lunar landing capabilities and resource prospecting possibilities.”
      This new announcement comes after NASA issued a Request for Information on Aug. 9, 2024, to seek interest from American companies and institutions in conducting a mission using the agency’s VIPER Moon rover after the program was canceled in July 2024.
      Any partnership would work under a Cooperative Research and Development Agreement. This type of partnership allows both NASA and an industry partner to contribute services, technology, and hardware to the collaboration.
      As part of an agreement, NASA would contribute the existing VIPER rover as-is. Potential partners would need to arrange for the integration and successful landing of the rover on the Moon, conduct a science/exploration campaign, and disseminate VIPER-generated science data. The partner may not disassemble the rover and use its instruments or parts separately from the VIPER mission. NASA’s selection approach will favor proposals that enable data from the mission’s science instruments to be shared openly with anyone who wishes to use it.
      “Being selected for the VIPER partnership would benefit any company interested in advancing their lunar landing and surface operations capabilities,” said Joel Kearns, deputy associate administrator for exploration in the Science Mission Directorate. “This solicitation seeks proposals that clearly describe what is needed to successfully land and operate the rover, and invites industry to propose their own complementary science goals and approaches. NASA is looking forward to partnering with U.S. industry to meet the challenges of performing volatiles science in the lunar environment.”
      The Moon is a cornerstone for solar system science and exoplanet studies. In addition to helping inform where ice exists on the Moon for potential future astronauts, understanding our nearest neighbor helps us understand how it has evolved and what processes shaped its surface. 
      To learn more about NASA’s lunar science, visit:
      https://www.nasa.gov/moon
      -end-
      Karen Fox
      Headquarters, Washington
      202-358-1100
      karen.fox@nasa.gov
      Share
      Details
      Last Updated Feb 03, 2025 Related Terms
      Missions VIPER (Volatiles Investigating Polar Exploration Rover) View the full article
    • By NASA
      The first shuttle mission of 1995, STS-63 included several historic firsts. As part of Phase 1 of the International Space Station program, space shuttle Discovery’s 20th flight conducted the first shuttle rendezvous with the Mir space station, in preparation for future dockings. The six-person crew included Commander James Wetherbee, Pilot Eileen Collins – the first woman to pilot a space shuttle mission – Payload Commander Bernard Harris, and Mission Specialists Michael Foale, Janice Voss, and Vladimir Titov. The spacewalk conducted during the mission included the first African American and the first British born astronauts to walk in space. The crew conducted 20 science and technology experiments aboard the third flight of the Spacehab module. The astronauts deployed and retrieved the SPARTAN-204 satellite that during its two-day free flight carried out observations of galactic objects using an ultraviolet instrument. 

      The STS-63 crew patch. The STS-63 crew of Janice Voss, front row left, Eileen Collins, James Wetherbee, and Vladimir Titov; Bernard Harris, back row left, and Michael Foale. The Shuttle-Mir program patch. NASA announced the six-person STS-63 crew in September 1993 for a mission then expected to fly in May 1994. Wetherbee, selected by NASA in 1984, had already flown twice in space, as pilot on STS-32 and commander of STS-52. For Collins, selected in the class of 1990 as the first woman shuttle pilot, STS-63 marked her first spaceflight. Also selected in 1990, Harris had flown previously on STS-55 and Voss on STS-57. Foale, selected as an astronaut in 1987, had flown previously on STS-45 and STS-56. Titov, selected as a cosmonaut in 1976, had flown two previous spaceflights – a two-day aborted docking mission to Salyut-7 and the first year-long mission to Mir – and survived a launch pad abort. He served as backup to Sergei Krikalev on STS-60, who now served as Titov’s backup. 

      Space shuttle Discovery rolls out to Launch Pad 39B. The STS-63 crew during the Terminal Countdown Demonstration Test in the White Room of Launch Pad 39B. The STS-63 astronauts walk out of crew quarters for the van ride out to the launch pad. Space shuttle Discovery arrived back at NASA’s Kennedy Space Center in Florida on Sept. 27, 1994, after a ferry flight from California following its previous mission, STS-64. Workers towed it to the Orbiter Processing Facility the next day. Following installation of the Spacehab, SPARTAN, and other payloads, on Jan. 5, 1995, workers rolled Discovery from the processing facility to the Vehicle Assembly Building for mating with an external tank and twin solid rocket boosters. Rollout to Launch Pad 39B took place on Jan. 10. On Jan. 17-18, teams conducted the Terminal Countdown Demonstration Test, a dress rehearsal for the countdown to launch planned for Feb. 2, with the astronaut crew participating in the final few hours as they would on launch day. They returned to Kennedy on Jan. 29 for final pre-launch preparations. On Feb. 2, launch teams called a 24-hour scrub to allow time to replace a failed inertial measurement unit aboard Discovery. 

      Launch of space shuttle Discovery on mission STS-63. STS-63 Commander James Wetherbee on Discovery’s flight deck. STS-63 Pilot Eileen Collins on Discovery’s flight deck. On Feb. 3, Discovery and its six-person crew lifted off from Launch Pad 39B at 12:22 a.m. EST, the time dictated by orbital mechanics – Discovery had to launch into the plane of Mir’s orbit. Within 8.5 minutes, Discovery had reached orbit, for the first time in shuttle history at an inclination of 51.6 degrees, again to match Mir’s trajectory. Early in the mission, one of Discovery’s 44 attitude control thrusters failed and two others developed minor but persistent leaks, threatening the Mir rendezvous.  

      View of the Spacehab module in Discovery’s payload bay. The SPARTAN-204 satellite attached to the remote manipulator system or robotic arm during the flight day two operations. On the mission’s first day in space, Harris and Titov activated the Spacehab module and several of its experiments. Wetherbee and Collins performed the first of five maneuvers to bring Discovery within 46 miles of Mir for the final rendezvous on flight day four. Teams on the ground worked with the astronauts to resolve the troublesome thruster problems to ensure a safe approach to the planned 33 feet. On flight day 2, as those activities continued, Titov grappled the SPARTAN satellite with the shuttle’s robotic arm and lifted it out of the payload bay. Scientists used the ultraviolet instrument aboard SPARTAN to investigate the ultraviolet glow around the orbiter and the aftereffects of thruster firings. The tests complete, Titov placed SPARTAN back in the payload bay.

      The Mir space station as seen from Discovery during the rendezvous. Space shuttle Discovery as seen from Mir during the rendezvous. Mir during Discovery’s flyaround. On flight day three, the astronauts continued working on science experiments while Wetherbee and Collins completed several more burns for the rendezvous on flight day four, the thruster issues resolved to allow the close approach to 33 feet. Flying Discovery manually from the aft flight deck, and assisted by his crew mates, Wetherbee slowly brought the shuttle to within 33 feet of the Kristall module of the space station. The STS-63 crew communicated with the Mir-17 crew of Aleksandr Viktorenko, Elena Kondakova, and Valeri Polyakov via VHF radio, and the crews could see each other through their respective spacecraft windows. After station-keeping for about 10 minutes, Wetherbee slowly backed Discovery away from Mir to a distance of 450 feet. He flew a complete circle around Mir before conducting a final separation maneuver. 

      The SPARTAN-204 satellite as it begins its free flight on flight day five. STS-63 crew member Vladimir Titov works on an experiment in the Spacehab module. On the mission’s fifth day, Titov once again grappled SPARTAN with the robotic arm, but this time after raising it above the payload bay, he released the satellite to begin its two-day free flight. Wetherbee steered Discovery away from the departing satellite. During its free flight, the far ultraviolet imaging spectrograph aboard SPARTAN recorded about 40 hours of observations of galactic dust clouds. During this time, the astronauts aboard the shuttle continued work on the 20 experiments in Spacehab and prepared for the upcoming spacewalk. 

      STS-63 crew member Janice Voss operates the remote manipulator system during the retrieval of the SPARTAN-204 satellite. STS-63 astronauts Bernard Harris, left, and Michael Foale at the start of their spacewalk. Wetherbee and the crew flew the second rendezvous of the mission on flight day seven to retrieve SPARTAN. Voss operated the robotic arm to capture and stow the satellite in the payload bay following its 43-hour free flight. Meanwhile, Foale and Harris suited up in the shuttle’s airlock and spent four hours breathing pure oxygen to rid their bodies of nitrogen to prevent decompression sickness, also known as the bends, when they reduced their spacesuit pressures for the spacewalk. 

      Astronauts Bernard Harris, left, and Michael Foale during the spacesuit thermal testing part of their spacewalk. Foale, left, and Harris during the mass handling part of their spacewalk. Foale and Harris exited the airlock minutes after Voss safely stowed SPARTAN. With Titov operating the robotic arm, Harris and Foale climbed aboard its foot restraint to begin the first phase of the spacewalk, testing modifications to the spacesuits for their thermal characteristics. Titov lifted them well above the payload bay and the two spacewalkers stopped moving for about 15 minutes, until their hands and feet got cold. The spacewalk then continued into its second portion, the mass handling activity. Titov steered Foale above the SPARTAN where he lifted the satellite up and handed it off to Harris anchored in the payload bay. Harris then moved it around in different directions to characterize handling of the 2,600-pound satellite. Foale and Harris returned to the airlock after a spacewalk lasting 4 hours 39 minutes. 

      The STS-63 astronauts pose for their inflight crew photo. Discovery makes a successful landing at NASA’s Kennedy Space Center in Florida. The day following the spacewalk, the STS-63 crew finished the science experiments, closed down the Spacehab module, and held a news conference with reporters on the ground. Wetherbee and Collins tested Discovery’s thrusters and aerodynamic surfaces in preparation for the following day’s reentry and landing. The next day, on Feb. 11, they closed Discovery’s payload bay doors and put on their launch and entry suits. Wetherbee guided Discovery to a smooth landing on Kennedy’s Shuttle Landing Facility, ending the historic mission after eight days, six hours, and 28 minutes. They orbited the Earth 129 times. The mission paved the way for nine shuttle dockings with Mir beginning with STS-71, and 37 with the International Space Station. Workers at Kennedy towed Discovery to the processing facility to prepare it for its next mission, STS-70 in July 1995. 
      Over the next three years, Wetherbee, Collins, Foale, and Titov all returned to Mir during visiting shuttle flights, with Foale staying aboard as the NASA-5 long-duration crew member. Between 2001 and 2005, Wetherbee, Collins, and Foale also visited the International Space Station. Wetherbee commanded two assembly flights, Collins commanded the return to flight mission after the Columbia accident, and Foale commanded Expedition 8. 
      Enjoy the crew narrate a video about their STS-63 mission. 

      Explore More
      9 min read 30 Years Ago: STS-60, the First Shuttle-Mir Mission
      Article 1 year ago 7 min read Space Station 20th: STS-71, First Shuttle-Mir Docking
      Article 5 years ago 11 min read Space Station 20th: Launch of Mir 18 Crew
      Article 5 years ago View the full article
  • Check out these Videos

×
×
  • Create New...