Members Can Post Anonymously On This Site
LEAP – Legged Exploration Across the Plume
-
Similar Topics
-
By NASA
6 Min Read Upcoming Launch to Boost NASA’s Study of Sun’s Influence Across Space
Soon, there will be three new ways to study the Sun’s influence across the solar system with the launch of a trio of NASA and National Oceanic and Atmospheric Administration (NOAA) spacecraft. Expected to launch no earlier than Tuesday, Sept. 23, the missions include NASA’s IMAP (Interstellar Mapping and Acceleration Probe), NASA’s Carruthers Geocorona Observatory, and NOAA’s SWFO-L1 (Space Weather Follow On-Lagrange 1) spacecraft.
The three missions will launch together aboard a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida. From there, the spacecraft will travel together to their destination at the first Earth-Sun Lagrange point (L1), around one million miles from Earth toward the Sun.
The missions will each focus on different effects of the solar wind — the continuous stream of particles emitted by the Sun — and space weather — the changing conditions in space driven by the Sun — from their origins at the Sun to their farthest reaches billions of miles away at the edge of our solar system. Research and observations from the missions will help us better understand the Sun’s influence on Earth’s habitability, map our home in space, and protect satellites and voyaging astronauts and airline crews from space weather impacts.
The IMAP and Carruthers missions add to NASA’s heliophysics fleet of spacecraft. Together, NASA’s heliophysics missions study a vast, interconnected system from the Sun to the space surrounding Earth and other planets to the farthest limits of the Sun’s constantly flowing streams of solar wind. The SWFO-L1 mission, funded and operated by NOAA, will be the agency’s first satellite designed specifically for and fully dedicated to continuous, operational space weather observations.
Mapping our home in space: IMAP
The IMAP mission will study the heliosphere, our home in space.
NASA/Princeton University/Patrick McPike As a modern-day celestial cartographer, IMAP will investigate two of the most important overarching issues in heliophysics: the interaction of the solar wind at its boundary with interstellar space and the energization of charged particles from the Sun.
The IMAP mission will principally study the boundary of our heliosphere — a huge bubble created by the solar wind that encapsulates our solar system — and study how the heliosphere interacts with the local galactic neighborhood beyond. The heliosphere protects the solar system from dangerous high-energy particles called galactic cosmic rays. Mapping the heliosphere’s boundaries helps scientists understand our home in space and how it came to be habitable.
“IMAP will revolutionize our understanding of the outer heliosphere,” said David McComas, IMAP mission principal investigator at Princeton University in New Jersey. “It will give us a very fine picture of what’s going on out there by making measurements that are 30 times more sensitive and at higher resolution than ever before.”
The IMAP mission will also explore and chart the vast range of particles in interplanetary space. The spacecraft will provide near real-time observations of the solar wind and energetic particles, which can produce hazardous conditions not only in the space environment near Earth, but also on the ground. The mission’s data will help model and improve prediction capabilities of the impacts of space weather ranging from power-line disruptions to loss of satellites.
Imaging Earth’s exosphere: Carruthers Geocorona Observatory
An illustration shows the Carruthers Geocorona Observatory spacecraft. NASA/BAE Systems Space & Mission Systems The Carruthers Geocorona Observatory, a small satellite, will launch with IMAP as a rideshare. The mission was named after Dr. George Carruthers, creator of the Moon-based telescope that captured the first images of Earth’s exosphere, the outermost layer of our planet’s atmosphere.
The Carruthers mission will build upon Dr. Carruthers’ legacy by charting changes in Earth’s exosphere. The mission’s vantage point at L1 offers a complete view of the exosphere not visible from the Moon’s relatively close distance to Earth. From there, it will address fundamental questions about the nature of the region, such as its shape, size, density, and how it changes over time.
The exosphere plays an important role in Earth’s response to space weather, which can impact our technology, from satellites in orbit to communications signals in the upper atmosphere or power lines on the ground. During space weather storms, the exosphere mediates the energy absorption and release throughout the near-Earth space environment, influencing strength of space weather disturbances. Carruthers will help us better understand the fundamental physics of our exosphere and improve our ability to predict the impacts of the Sun’s activity.
“We’ll be able to create movies of how this atmospheric layer responds when a solar storm hits, and watch it change with the seasons over time,” said Lara Waldrop, the principal investigator for the Carruthers Geocorona Observatory at the University of Illinois at Urbana-Champaign.
New space weather station: SWFO-L1
SWFO-L1 will provide real-time observations of the Sun’s corona and solar wind to help forecast the resulting space weather.
NOAA/BAE Systems Space & Mission Systems Distinct from NASA’s research satellites, SWFO-L1 will be an operational satellite, designed to observe solar activity and the solar wind in real time to provide critical data in NOAA’s mission to protect the nation from environmental hazards. SWFO-L1 will serve as an early-warning beacon for potentially damaging space weather events that could impact our technology on Earth. SWFO-L1 will observe the Sun’s outer atmosphere for large eruptions, called coronal mass ejections, and measure the solar wind upstream from Earth with a state-of-the-art suite of instruments and processing system.
This mission is the first of a new generation of NOAA space weather observatories dedicated to 24/7 operations, working to avoid gaps in continuity.
“SWFO-L1 will be an amazing deep-space mission for NOAA,” said Dimitrios Vassiliadis, SWFO program scientist at NOAA. “Thanks to its advantageous location at L1, it will continuously monitor the solar atmosphere while measuring the solar wind and its interplanetary magnetic fields well before it impacts Earth — and transmit these data in record time.”
With SWFO-L1’s enhanced performance, unobstructed views, and minimal delay between observations and data return, NOAA’s Space Weather Prediction Center forecasters will give operators improved lead time required to take precautionary actions that protect vital infrastructure, economic interests, and national security on Earth and in space.
By Mara Johnson-Groh
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Sep 04, 2025 Related Terms
Carruthers Geocorona Observatory (GLIDE) Heliophysics Heliosphere IMAP (Interstellar Mapping and Acceleration Probe) NOAA (National Oceanic and Atmospheric Administration) Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
3 min read Juno Detected the Final Missing Auroral Signature from Jupiter’s Four Largest Moons
Article
2 days ago
6 min read NASA, IBM’s ‘Hot’ New AI Model Unlocks Secrets of Sun
Article
2 weeks ago
3 min read Sun at the Center: Teacher Ambassadors Bring Heliophysics to Classrooms Nationwide
Article
2 weeks ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Amit KshatriyaCredit: NASA Acting NASA Administrator Sean P. Duffy Wednesday named Amit Kshatriya as the new associate administrator of NASA, the agency’s top civil service role.
A 20-year NASA veteran, Kshatriya was most recently the deputy in charge of the Moon to Mars Program in the Exploration Systems Development Mission Directorate (ESDMD) at NASA Headquarters in Washington. In this role, Kshatriya was responsible for program planning and implementation for crewed missions to the Moon through the Artemis campaign in preparation for humanity’s first mission to Mars.
Promoting Kshatriya to NASA’s top ranks puts America’s return to the Moon through Artemis at the very core of our agency. The move exemplifies President Donald J. Trump and Duffy’s seriousness about returning Americans to the Moon and before China.
“Amit has spent more than two decades as a dedicated public servant at NASA, working to advance American leadership in space. Under his leadership, the agency will chart a bold vision to return to the Moon during President Trump’s term,” said Duffy. “Amit’s knowledge, integrity, and unwavering commitment to pioneering a new era of exploration make him uniquely qualified to lead our agency as associate administrator. With Amit we’ll continue to push the boundaries of what’s possible.”
Kshatriya’s promotion also signals how the Trump Administration sees the commercial space sector as an American economic engine. By putting a proven leader at the top, NASA is set to partner even more closely with America’s booming space industry, grow the space economy, and ensure the future of exploration is built in the United States.
Born in Wisconsin, educated at California Institute of Technology and the University of Texas at Austin, Kshatriya is one of only about 100 people in history to serve as a mission control flight director. He brings unparalleled operational and strategic experience to NASA’s executive leadership team.
-end-
Bethany Stevens
Headquarters, Washington
771-216-2606
bethany.c.stevens@nasa.gov
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA now is accepting proposals from student teams for a contest to design, build, and test rovers for Moon and Mars exploration through Sept. 15.
Known as the Human Exploration Rover Challenge, student rovers should be capable of traversing a course while completing mission tasks. The challenge handbook has guidelines for remote-controlled and human-powered divisions.
The cover of the HERC 2026 handbook, which is now available online. “Last year, we saw a lot of success with the debut of our remote-controlled division and the addition of middle school teams,” said Vemitra Alexander, the activity lead for the challenge at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “We’re looking forward to building on both our remote-controlled and human-powered divisions with new challenges for the students, including rover automation.”
This year’s mission mimics future Artemis missions to the lunar surface. Teams are challenged to test samples of soil, water, and air from sites along a half-mile course that includes a simulated field of asteroid debris, boulders, erosion ruts, crevasses, and an ancient streambed. Human-powered rover teams will play the role of two astronauts in a lunar terrain vehicle and must use a custom-built task tool to manually collect samples needed for testing. Remote-controlled rover teams will act as a pressurized rover, and the rover itself will contain the tools necessary to collect and test samples onboard.
“NASA’s Human Exploration Rover Challenge creates opportunities for students to develop the skills they need to be successful STEM professionals,” said Alexander. “This challenge will help students see themselves in the mission and give them the hands-on experience needed to advance technology and become the workforce of tomorrow.”
Seventy-five teams comprised of more than 500 students participated in the agency’s 31st rover challenge in 2025. Participants represented 35 colleges and universities, 38 high schools, and two middle schools, across 20 states, Puerto Rico, and 16 nations around the world.
The 32nd annual competition will culminate with an in-person event April 9-11, 2026, at the U.S. Space & Rocket Center near NASA Marshall.
The rover challenge is one of NASA’s Artemis Student Challenges, reflecting the goals of the Artemis campaign, which seeks to explore the Moon for scientific discovery, technology advancement, and to learn how to live and work on another world as we prepare for human missions to Mars. NASA uses such challenges to encourage students to pursue degrees and careers in the fields of science, technology, engineering, and mathematics.
Since its inception in 1994, more than 15,000 students have participated in the rover challenge – with many former students now working at NASA or within the aerospace industry.
To learn more about HERC, visit:
https://www.nasa.gov/roverchallenge/
Share
Details
Last Updated Aug 15, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
Marshall Space Flight Center Explore More
4 min read NASA IXPE’s ‘Heartbeat Black Hole’ Measurements Challenge Current Theories
Article 3 days ago 6 min read NASA’s Hubble, Chandra Spot Rare Type of Black Hole Eating a Star
NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory have teamed up to identify a…
Article 3 weeks ago 4 min read Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage
Article 4 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
NASA Glenn Research Center’s Thermal Energy Conversion Branch team and the University of Leicester’s Space Nuclear Power team pose for a photo at the center in Cleveland following a successful test in January 2025.Credit: NASA/Jef Janis To explore the unknown in deep space, millions of miles away from Earth, it’s crucial for spacecraft to have ample power. NASA’s radioisotope power systems (RPS) are a viable option for these missions and have been used for over 60 years, including for the agency’s Voyager spacecraft and Perseverance Mars rover. These nuclear batteries provide long-term electrical power for spacecraft and science instruments using heat produced by the natural radioactive decay of radioisotopes. Now, NASA is testing a new type of RPS heat source fuel that could become an additional option for future long-duration journeys to extreme environments.
Historically, the radioisotope plutonium-238 (plutonium oxide) has been NASA’s RPS heat source fuel of choice, but americium-241 has been a source of interest for the past two decades in Europe. In January, the Thermal Energy Conversion Branch at NASA’s Glenn Research Center in Cleveland and the University of Leicester, based in the United Kingdom, partnered through an agreement to put this new option to the test.
One method to generate electricity from radioisotope heat sources is the free-piston Stirling convertor. This is a heat engine that converts thermal energy into electrical energy. However, instead of a crankshaft to extract power, pistons float freely within the engine. It could operate for decades continuously without wear, as it does not have piston rings or rotating bearings that will eventually wear out. Thus, a Stirling convertor could generate more energy, allowing more time for exploration in deep space. Researchers from the University of Leicester — who have been leaders in the development of americium RPS and heater units for more than 15 years — and NASA worked to test the capabilities of a Stirling generator testbed powered by two electrically heated americium-241 heat source simulators.
“The concept started as just a design, and we took it all the way to the prototype level: something close to a flight version of the generator,” said Salvatore Oriti, mechanical engineer at Glenn. “The more impressive part is how quickly and inexpensively we got it done, only made possible by a great synergy between the NASA and University of Leicester teams. We were on the same wavelength and shared the same mindset.”
Salvatore Oriti, mechanical engineer in the Thermal Energy Conversion Branch at NASA’s Glenn Research Center in Cleveland, adjusts the Stirling testbed in preparation for testing at the center in January 2025.Credit: NASA/Jef Janis The university provided the heat source simulators and generator housing. The heat source simulator is the exact size and shape of their real americium-241 heat source, but it uses embedded electric heaters to create an equivalent amount of heat to simulate the decay of americium fuel and therefore drive generator operation. The Stirling Research Lab at Glenn provided the test station, Stirling convertor hardware, and support equipment.
“A particular highlight of this (testbed) design is that it is capable of withstanding a failed Stirling convertor without a loss of electrical power,” said Hannah Sargeant, research fellow at the University of Leicester. “This feature was demonstrated successfully in the test campaign and highlights the robustness and reliability of an Americium-Radioisotope Stirling Generator for potential future spaceflight missions, including long-duration missions that could operate for many decades.”
The test proved the viability of an americium-fueled Stirling RPS, and performance and efficiency targets were successfully met. As for what’s next, the Glenn team is pursuing the next version of the testbed that will be lower mass, higher fidelity, and undergo further environmental testing.
“I was very pleased with how smoothly everything went,” Oriti said of the test results. “Usually in my experience, you don’t accomplish everything you set out to, but we did that and more. We plan to continue that level of success in the future.”
For more information on NASA’s RPS programs, visit:
https://science.nasa.gov/rps
Explore More
2 min read GLOBE-Trotting Science Lands in Chesapeake with NASA eClips
On June 16-17, 2025, 50 students at Camp Young in Chesapeake, Virginia traded their usual…
Article 19 hours ago 6 min read 5 Things to Know About Powerful New U.S.-India Satellite, NISAR
Article 21 hours ago 3 min read NASA-Derived Textiles are Touring France by Bike
Article 4 days ago View the full article
-
By NASA
Lisa Pace knows a marathon when she sees one. An avid runner, she has participated in five marathons and more than 50 half marathons. Though she prefers to move quickly, she also knows the value of taking her time. “I solve most of my problems while running – or realize those problems aren’t worth worrying about,” she said.
She has learned to take a similar approach to her work at NASA’s Johnson Space Center in Houston. “Earlier in my career, I raced to get things done and felt the need to do as much as possible on my own,” she said. “Over time, I’ve learned to trust my team and pause to give others an opportunity to contribute. There are times when quick action is needed, but it is often a marathon, not a sprint.”
Official portrait of Lisa Pace.NASA/Josh Valcarcel Pace is chief of the Exploration Development Integration Division within the Exploration Architecture, Integration, and Science Directorate at Johnson. In that role, she leads a team of roughly 120 civil servants and contractors in providing mission-level system engineering and integration services that bring different architecture elements together to achieve the agency’s goals. Today that team supports Artemis missions, NASA’s Commercial Lunar Payload Services initiative and other areas as needed.
Lisa Pace, seated at the head of the table, leads an Exploration Development Integration Division team meeting at NASA’s Johnson Space Center in Houston. NASA/James Blair “The Artemis missions come together through multiple programs and projects,” Pace explained. “We stitch them together to ensure the end-to-end mission meets its intended requirements. That includes verifying those requirements before flight and ensuring agreements between programs are honored and conflicts resolved.” The division also manages mission-level review and flight readiness processes from planning through execution, up to the final certification of flight readiness.
Leading the division through the planning, launch, and landing of Artemis I was a career highlight for Pace, though she feels fortunate to have worked on many great projects during her time with NASA. “My coolest and most rewarding project involved designing and deploying an orbital debris tracking telescope on Ascension Island about 10 years ago,” she said. “The engineers, scientists, and military personnel I got to work and travel with on that beautiful island is tough to top!”
Pace says luck and great timing led her to NASA. Engineering jobs were plentiful when she graduated from Virginia Tech in 2000, and she quickly received an offer from Lockheed Martin to become a facility engineer in Johnson’s Astromaterials Research and Exploration Science Division, or ARES. “I thought working in the building where they keep the Moon rocks would be cool – and it was! Twenty-five years later, I’m still here,” Pace said.
During that time, she has learned a lot about problem-solving and team building. “I often find that when we disagree over the ‘right’ way to do something, there is no one right answer – it just depends on your perspective,” she said. “I take the time to listen to people, understand their side, and build relationships to find common ground.”
Lisa Pace, right, participates in a holiday competition hosted by her division.Image courtesy of Lisa Pace She also emphasizes the importance of getting to know your colleagues. “Relationships are everything,” she said. “They make the work so much more meaningful. I carry that lesson over to my personal life and value my time with family and friends outside of work.”
Investing time in relationships has given Pace another unexpected skill – that of matchmaker. “I’m responsible for setting up five couples who are now married, and have six kids between them,” she said, adding that she knew one couple from Johnson.
She hopes that strong relationships transfer to the Artemis Generation. “I hope to pass on a strong NASA brand and the family culture that I’ve been fortunate to have, working here for the last 25 years.”
Explore More
3 min read Meet Rob Navias: Public Affairs Officer and Mission Commentator
Article 5 days ago 5 min read Heather Cowardin Safeguards the Future of Space Exploration
Article 1 week ago 5 min read Driven by a Dream: Farah Al Fulfulee’s Quest to Reach the Stars
Article 2 weeks ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.