Jump to content

Recommended Posts

  • Publishers
Posted

2 min read

Sols 4416-4417: New Year, New Clouds

A grayscale image from the Martian surface shows a small gentle hill covered in dark gray rocky terrain, in the bottom quarter of the image. Above that is a light gray sky filled with glowing clouds resembling luminescent mother-of-pearl.
NASA’s Mars rover Curiosity captured this image of noctilucent clouds using its Right Navigation Camera on sol 4401 — or Martian day 4,401 of the Mars Science Laboratory mission — on Dec. 23, 2024, at 08:57:15 UTC.
NASA/JPL-Caltech

Earth planning date: Monday, Jan. 6, 2025

After our marathon holiday plan, we’re easing back into the new year with a standard two-sol plan. We did arrive today to the news that the drive hadn’t made it as far as we wanted, but luckily the rover planners determined that we were still in a good position to do contact science on two wintry targets — “Snow Creek” and “Winter Creek.” We also packed in lots of remote science with ChemCam using LIBS on “Grapevine” and “Skull Rock,” and we are doing long-distance imaging of the Texoli and Wilkerson buttes, and Gould Mesa. Mastcam will be imaging a number of targets near and far as well including “Red Box”’ “Point Mugu,” “Stone Canyon,” “Pine Cove,” and “Hummingbird Sage,” which will examine various structures in the bedrock. We can’t forget about the atmosphere either — we have a couple dust-devil surveys to look for dust lifting, but the real star of the show (at least for me) is the cloud imaging.

While we’re just into 2025 here on Earth, we’re also near the start of a new year on Mars! A Mars year starts at the northern vernal equinox (or the start of autumn in the southern hemisphere, where Curiosity is), and Mars year 38 started on Nov. 12.

We’re about a third of the way through autumn on Mars now, and the southern Martian autumn and winter bring one thing — clouds! Near the start of the Martian year we start seeing clouds around sunset. These are noctilucent (meaning “night illuminated”) clouds. Even though the sun has set in Gale Crater, the clouds are high enough in the atmosphere that the sun still shines on them, making them seem to almost glow in the sky. You can see this with clouds on Earth, too, around twilight! Mars year 38 will be our fourth year capturing these twilight clouds, and the Navcam images (one of which you can see above) already show it’s shaping up to be another year of spectacular clouds!

Written by Alex Innanen, Atmospheric Scientist at York University

Share

Details

Last Updated
Jan 08, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm
      Key Points
      The May 2024 solar storm created two new temporary belts of high-energy particles surrounding Earth. Such belts have been seen before, but the new ones were particularly long lasting, especially the new proton belt.  The findings are particularly important for spacecraft launching into geostationary orbits, which can be damaged as they traverse the dangerous belts. The largest solar storm in two decades hit Earth in May 2024. For several days, wave after wave of high-energy charged particles from the Sun rocked the planet. Brilliant auroras engulfed the skies, and some GPS communications were temporarily disrupted.
      With the help of a serendipitously resurrected small NASA satellite, scientists have discovered that this storm also created two new temporary belts of energetic particles encircling Earth. The findings are important to understanding how future solar storms could impact our technology. 
      The new belts formed between two others that permanently surround Earth called the Van Allen Belts. Shaped like concentric rings high above Earth’s equator, these permanent belts are composed of a mix of high-energy electrons and protons that are trapped in place by Earth’s magnetic field. The energetic particles in these belts can damage spacecraft and imperil astronauts who pass through them, so understanding their dynamics is key to safe spaceflight. 
      The May 2024 solar storm created two extra radiation belts, sandwiched between the two permanent Van Allen Belts. One of the new belts, shown in purple, included a population of protons, giving it a unique composition that hadn’t been seen before. NASA/Goddard Space Flight Center/Kristen Perrin The discovery of the new belts, made possible by NASA’s Colorado Inner Radiation Belt Experiment (CIRBE) satellite and published Feb. 6, 2025, in the Journal of Geophysical Research: Space Physics, is particularly important for protecting spacecraft launching into geostationary orbits, since they travel through the Van Allen Belts several times before reaching their final orbit.
      New Belts Amaze Scientists
      Temporary belts have been detected in the aftermath of large solar storms before. But while previous belts have been composed mostly of electrons, the innermost of the two new belts also included energetic protons. This unique composition is likely due to the strength and composition of the solar storm.
      “When we compared the data from before and after the storm, I said, ‘Wow, this is something really new,’” said the paper’s lead author Xinlin Li, a professor at the Laboratory for Atmospheric and Space Physics (LASP) and Department of Aerospace Engineering Sciences at the University of Colorado Boulder. “This is really stunning.”
      The new belts also seem to have lasted much longer than previous belts. Whereas previous temporary belts lasted around four weeks, the new belt composed primary of electrons lasted more than three months. The other belt, that also includes protons, has lasted much longer than the electron belt because it is in a more stable region and is less prone to the physical processes that can knock the particles out of orbit. It is likely still there today.
      “These are really high-energy electrons and protons that have found their way into Earth’s inner magnetic environment,” said David Sibeck, former mission scientist for NASA’s Van Allen Probes and research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who was not involved with the new study. “Some might stay in this place for a very long time.”
      How long such belts stick around depends on passing solar storms. Large storms can provide the energy to knock particles in these belts out of their orbits and send them spiraling off into space or down to Earth. One such storm at the end of June significantly decreased the size of the new electron belt and another in August nearly erased the remainder of that electron belt, though a small population of high-energy electrons endured.
      CubeSat Fortuitously Comes Back to Life to Make the Discovery
      The new discovery was made by NASA’s CIRBE satellite, a CubeSat about the size of a shoebox that circled the planet’s magnetic poles in a low Earth orbit from April 2023 to October 2024. CIRBE housed an instrument called the Relativistic Electron Proton Telescope integrated little experiment-2 (REPTile-2) — a miniaturized and upgraded version of an instrument that flew aboard NASA’s Van Allen Probes, which made the first discovery of a temporary electron belt in 2013.
      The CIRBE CubeSat in the laboratory before launch. CIRBE was designed and built by LASP at the University of Colorado Boulder. Xinlin Li/LASP/CU Boulder After a year in space, the CubeSat experienced an anomaly and unexpectedly went quiet on April 15, 2024. The scientists were disappointed to miss the solar storm in May but were able to rely on other spacecraft to provide some preliminary data on the electron belt. Luckily, on June 15, the spacecraft sprang back to life and resumed taking measurements. The data provided high-resolution information that couldn’t be gleaned by any other instrument and allowed the scientists to understand the magnitude of the new belts.
      “Once we resumed measurements, we were able to see the new electron belt, which wasn’t visible in the data from other spacecraft,” Li said.
      Having the CubeSat in orbit to measure the effect of the solar storm has been bittersweet, Li said. While it provided the opportunity to measure the effects of such a large event, the storm also increased atmospheric drag on the CubeSat, which caused its orbit to decrease prematurely. As a result, the CubeSat deorbited in October 2024. However, the spacecraft’s data makes it all worth it.
      “We are very proud that our very small CubeSat made such a discovery,” Li said.
      CIRBE was designed and built by LASP at the University of Colorado Boulder and was launched through NASA’s CubeSat Launch Initiative (CSLI). The mission is sponsored by NASA’s Heliophysics Flight Opportunities for Research & Technology (H-FORT) program.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Feb 06, 2025 Related Terms
      Heliophysics CubeSats Goddard Space Flight Center Heliophysics Division Ionosphere Space Weather The Sun Van Allen Probes Explore More
      5 min read Straight Shot: Hubble Investigates Galaxy with Nine Rings


      Article


      2 days ago
      2 min read Hubble Spots a Supernova


      Article


      6 days ago
      2 min read Hubble Studies the Tarantula Nebula’s Outskirts


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 2 min read
      Sols 4443-4444: Four Fours for February
      NASA’s Mars rover Curiosity acquired this image from about 25 centimeters (about 10 inches) away from the polygonally-fractured bedrock target named “Coldwater Canyon.” Curiosity captured the image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on Feb. 2, 2025 — sol 4441, or Martian day 4,441 of the Mars Science Laboratory Mission — at 08:40:11 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Feb. 3, 2025
      Another successful weekend plan left us about 23 meters (about 75 feet) farther down our Mount Sharp Ascent Route (MSAR), with all our science data downlinked to Earth and the planet clocks aligned once more. We only have until 18:26 Pacific time to get this Monday’s plan uplinked (due to the Soliday over the weekend), and two full days of science to plan! 
      Our first sol science block starts at 12:06 local Gale Crater time, including a ChemCam long-distance RMI mosaic and a five-shot laser on bedrock. After ChemCam is done, Mastcam is planning 42 images, including ChemCam’s LIBS spots, some meteorite fragments, sand troughs between bedrock blocks, and interesting vein structures in our surrounding terrain. Navcam is planning to finish out that science block with a large dust devil survey. After our remote science wraps up, we’ve committed the hours between about 15:00 and 22:45 to our full contact science suite. Luckily, SRAP passed yet again and we took the opportunity to plan two targets — “San Rafael Hills” as our DRT target and “Allison Mine” as a potential meteorite target. 
      After a nice, long sleep our rover will wake up at 09:53 local Gale time and start another round of remote science to start the sol. This time ChemCam will shoot their laser at the potential meteorite and contact target Allison Mine, with Mastcam following up to document the spots. After one last 20-minute sweep of Texoli butte through Mastcam, it’s time to pack up and head back down the MSAR. Hopefully our drive goes well again and we’ll find ourselves about 36 meters (about 118 feet) away on Wednesday!
      Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems
      Share








      Details
      Last Updated Feb 06, 2025 Related Terms
      Blogs Explore More
      3 min read Persevering Through Science


      Article


      2 days ago
      3 min read Sols 4441-4442: Winter is Coming


      Article


      2 days ago
      2 min read Sols 4439-4440: A Lunar New Year on Mars


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      (Jan. 13, 2025) Astronaut Nick Hague swaps samples of materials to observe how they burn in weightlessness.Credit: NASA Students from the Thomas Edison EnergySmart Charter School in Somerset, New Jersey, will have the chance to connect with NASA astronaut Nick Hague as he answers prerecorded science, technology, engineering, and mathematics (STEM) related questions from aboard the International Space Station.
      Watch the 20-minute space-to-Earth call at 11:10 a.m. EST on Tuesday, Feb. 11, on NASA+ and learn how to watch NASA content on various platforms, including social media.
      Media interested in covering the event must RSVP by 5 p.m., Thursday, Feb. 6, to Jeanette Allison at: oyildiz@energysmartschool.org or 732-412-7643.
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos and lesson plans highlighting space station research at:
      https://www.nasa.gov/stemonstation
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Sandra Jones 
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Feb 05, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Humans in Space In-flight Education Downlinks ISS Research STEM Engagement at NASA View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 3 min read
      Sols 4441-4442: Winter is Coming
      NASA’s Mars rover Curiosity acquired this image of its workspace, which includes some polygonal fracture features just to the left of the top center of the image, using its Left Navigation Camera on sol 4439, or Martian day 4,439 of the Mars Science Laboratory mission, on Jan. 31, 2025, at 05:43:05 UTC. NASA/JPL-Caltech Earth planning date: Friday, Jan. 31, 2025
      Here in Earth’s northern hemisphere, the days are slowly getting longer, bringing with them the promise of an end to winter. While we are anticipating the return of warmer temperatures, just over 100 million kilometers (more than 62 million miles) away, Curiosity is starting to feel the bite of the colder season.
      One of the quirks of Mars’ orbital configuration is that aphelion (when Mars is farthest from the Sun) occurs about a month and a half before the southern winter solstice. This means that winters in the southern hemisphere (where Curiosity is located) are both longer and colder than those in the northern hemisphere. Consequently, we need to spend more of our power on keeping the rover warm, limiting the time that can be spent doing science. 
      Today’s plan was fairly constrained by the available power, so our various instrument and science teams had to carefully coordinate their requests to ensure that we stay within the power limits that have been budgeted out over the next several plans. Our team is never one to back down from a challenge, so this plan squeezes as much science as possible out of every watt-hour of power we were given.
      Our drive from Wednesday’s plan completed successfully (quite an accomplishment in the current terrain!). One of our wheels ended up perched a few centimetres up on a rock, so we aren’t able to use APXS or DRT today, but we were still able to unstow the arm to take some MAHLI images. 
      This plan kicks off with a pair of ChemCam and Mastcam coordinated activities. The first of these two focuses on some interesting polygonal fractures that we ended up parked in front of (see the image above). ChemCam will use its LIBS laser on these fractures before they are imaged by Mastcam. ChemCam will then use its RMI camera to take a mosaic of some features on the crater floor way off in the distance, which Mastcam will also image. Mastcam then goes it alone, with images of “Vivian Creek” (some sedimentary layers in today’s contact science target), “Dawn Mine” (a potential meteorite), and a trough off of the rover’s right side. The Environmental Science (ENV) team will continue their monitoring of the environment with a Mastcam tau to measure dust in the atmosphere as well as Navcam cloud and dust devil movies. After a short nap, the arm is unstopped to take a number of MAHLI images of “Coldwater Canyon,” over a range of distances between 5 and 25 centimeters away (about 2-10 inches).
      The second sol of this plan is largely consumed by ENV activities, including another tau and a Navcam line-of-sight observation to monitor dust. A big chunk of this sol’s plan is taken up by ChemCam passive observations (not using the LIBS laser) of the atmosphere. This “passive sky” observation allows us to measure atmospheric aerosol properties and the amount of oxygen and water in the air. Of course, ENV couldn’t have all the fun, so this sol also contains a typical ChemCam LIBS observation of “Big Dalton” with a Mastcam image afterward. After stowing the arm, we will drive off from our current location.
      Right before handing off to Monday’s plan, we wrap up with our typical early-morning ENV weekend science time, which includes more tau and line-of-sight dust observations and several Navcam cloud movies. RAD, REMS, and DAN also continue their monitoring of the environment throughout this plan.
      Written by Conor Hayes, Graduate Student at York University
      Share








      Details
      Last Updated Feb 04, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4439-4440: A Lunar New Year on Mars


      Article


      4 days ago
      4 min read Sols 4437-4438: Coordinating our Dance Moves


      Article


      6 days ago
      2 min read Sols 4434-4436: Last Call for Clouds


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      NASA Stennis representative Dawn Davis, left, interacts with people at the NASA booth during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie NASA reached out to inspire members of the Artemis Generation on Jan. 10-12, joining one of the largest comic con producers in the world to host an outreach booth at the 2025 FAN EXPO in New Orleans.
      Thousands of fans celebrating the best in pop culture such as movies, comics, and video gaming learned about NASA’s Stennis Space Center near Bay St. Louis, Mississippi, and its role to power space dreams.
      NASA Stennis representatives Patricia White, left, and Robert Smith are visited by a functional mock-up of R5-D4, a droid character from the Star Wars film series, during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie NASA Stennis representative Dawn Davis, left, interacts with people at the NASA booth during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie NASA Stennis representative Troy Frisbie, left, is pictured with Colleen Cooper, daughter of L. Gordon Cooper Jr., one of the original Mercury Seven astronauts, during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12. Cooper Jr., selected as a Mercury astronaut in 1959, piloted the “Faith 7” spacecraft in 1963, which concluded the operational phase of Project Mercury. NASA/Patricia White NASA Stennis representative Matt Sappington engages with a comic con fan at the NASA booth during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie NASA Stennis representatives Patricia White, left, and Robert Smith have a conversation with NASA booth visitors during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie A comic con attendee experiences being on the International Space Station with the immersive virtual reality headset at the NASA booth during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie Fans of all ages learn about NASA during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie Attendees learn about the ways people come together in various career fields to achieve mission success at NASA during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie The south Mississippi NASA center operates as NASA’s primary, and America’s largest, rocket propulsion test site. NASA Stennis serves the nation and commercial aerospace sector with its unique capabilities and expertise. In addition to testing rocket engines and stages to power future Artemis missions to the Moon and beyond, NASA Stennis provides a unique location and specialized assets to support the individual missions and work of about 50 federal, state, academic, commercial, and technology-based companies, and organizations.
      In addition to testing rocket engines and stages to power future Artemis missions to the Moon and beyond, NASA Stennis provides a unique location and specialized assets to support the individual missions and work of about 50 federal, state, academic, commercial, and technology-based companies, and organizations.
      View the full article
  • Check out these Videos

×
×
  • Create New...