Jump to content

Astronomy Activation Ambassadors: A New Era


Recommended Posts

  • Publishers
Posted

3 min read

Astronomy Activation Ambassadors: A New Era

The NASA Science Activation Program’s Astronomy Activation Ambassadors (AAA) project aims to measurably enhance student Science, Technology, Engineering, and Mathematics (STEM) engagement via middle school, high school, and community college science teacher professional development.

In 2024, AAA transitioned its focus to the development of an Astronomy Academy with varying levels of extent and intensity available to more than 300 teachers per year. Participants draw on NASA resources and Subject Matter Experts (SME) to enhance their teaching and help share their excitement about astronomy with their students. The three strands that comprise the Astronomy Academy are:

  1. webinars regarding NASA astrophysics and planetary science content and facilities,
  2. curriculum workshops enabling classroom use of an electromagnetic spectrum and multi-wavelength astronomy (EMS/MWA) curriculum, and
  3. STEM immersion experiences including guided visits to working observatories.

The first two of the AAA program’s new type of STEM immersion experiences took place in June and September, 2024. During the weekend of June 22-23, 19 teachers gathered in San Jose, California for a full agenda, including:

  • NASA SME presentations regarding planetary protection and exoplanet detection,
  • a journey to the University of California’s Lick Observatory on nearby Mt. Hamilton for an in-depth guided tour of the observatory’s astronomy research facilities, which included engagement with the astronomers using the 3-meter Shane telescope, and
  • a 4-hour hands-on EMS/MWA curriculum teaching workshop.

A similar STEM immersion sequence was offered September 14-15 to 23 AAA teachers who attended a curriculum teaching workshop, learned about current infrared astronomy research from NASA Jet Propulsion Laboratory scientists, and received guided visits to the Keck Observatory’s remote observing facility on the Caltech campus and the Mt. Wilson Observatory, including a half-night’s reserved use of the historic Mt. Wilson 60-inch telescope. The teachers were invited to submit a list of objects to be observed with the Mt. Wilson telescope and viewed a wonderful array of star clusters, colorful double stars, and galaxies, with a grand finale view of Saturn and its rings.

Teacher participant, Domina Stamas (Westlake Charter School, Sacramento, California), had this to say: “My students and I are already benefiting greatly from the combination of NASA resources, science content, and curricular materials we have received from the AAA project. The evening at Lick Observatory talking with the astronomers who were using the research telescopes watching the laser guide star setup in action was a rich experience. I can convey to my students how scientists actually practice their craft.”

The Astronomy Activation Ambassador project’s efforts to improve student STEM learning and engagement via science teacher professional development are detailed at: https://www.seti.org/aaa

Educator enrollment is still open via the participant registration form:
https://forms.gle/G34vCzz63ko5RRrM8

The AAA project, led by the SETI Institute, is supported by NASA under cooperative agreement award number NNX16AC51A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

Group of 23 teachers standing in a closed observatory dome in front of a long telescope on top of a support column.
June 2024 teacher participants in front of the Lick Observatory’s historic 36-inch refracting telescope.
SETI Institute/C. Clark

Share

Details

Last Updated
Dec 31, 2024
Editor
NASA Science Editorial Team
Location
Jet Propulsion Laboratory

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm
      Key Points
      The May 2024 solar storm created two new temporary belts of high-energy particles surrounding Earth. Such belts have been seen before, but the new ones were particularly long lasting, especially the new proton belt.  The findings are particularly important for spacecraft launching into geostationary orbits, which can be damaged as they traverse the dangerous belts. The largest solar storm in two decades hit Earth in May 2024. For several days, wave after wave of high-energy charged particles from the Sun rocked the planet. Brilliant auroras engulfed the skies, and some GPS communications were temporarily disrupted.
      With the help of a serendipitously resurrected small NASA satellite, scientists have discovered that this storm also created two new temporary belts of energetic particles encircling Earth. The findings are important to understanding how future solar storms could impact our technology. 
      The new belts formed between two others that permanently surround Earth called the Van Allen Belts. Shaped like concentric rings high above Earth’s equator, these permanent belts are composed of a mix of high-energy electrons and protons that are trapped in place by Earth’s magnetic field. The energetic particles in these belts can damage spacecraft and imperil astronauts who pass through them, so understanding their dynamics is key to safe spaceflight. 
      The May 2024 solar storm created two extra radiation belts, sandwiched between the two permanent Van Allen Belts. One of the new belts, shown in purple, included a population of protons, giving it a unique composition that hadn’t been seen before. NASA/Goddard Space Flight Center/Kristen Perrin The discovery of the new belts, made possible by NASA’s Colorado Inner Radiation Belt Experiment (CIRBE) satellite and published Feb. 6, 2025, in the Journal of Geophysical Research: Space Physics, is particularly important for protecting spacecraft launching into geostationary orbits, since they travel through the Van Allen Belts several times before reaching their final orbit.
      New Belts Amaze Scientists
      Temporary belts have been detected in the aftermath of large solar storms before. But while previous belts have been composed mostly of electrons, the innermost of the two new belts also included energetic protons. This unique composition is likely due to the strength and composition of the solar storm.
      “When we compared the data from before and after the storm, I said, ‘Wow, this is something really new,’” said the paper’s lead author Xinlin Li, a professor at the Laboratory for Atmospheric and Space Physics (LASP) and Department of Aerospace Engineering Sciences at the University of Colorado Boulder. “This is really stunning.”
      The new belts also seem to have lasted much longer than previous belts. Whereas previous temporary belts lasted around four weeks, the new belt composed primary of electrons lasted more than three months. The other belt, that also includes protons, has lasted much longer than the electron belt because it is in a more stable region and is less prone to the physical processes that can knock the particles out of orbit. It is likely still there today.
      “These are really high-energy electrons and protons that have found their way into Earth’s inner magnetic environment,” said David Sibeck, former mission scientist for NASA’s Van Allen Probes and research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who was not involved with the new study. “Some might stay in this place for a very long time.”
      How long such belts stick around depends on passing solar storms. Large storms can provide the energy to knock particles in these belts out of their orbits and send them spiraling off into space or down to Earth. One such storm at the end of June significantly decreased the size of the new electron belt and another in August nearly erased the remainder of that electron belt, though a small population of high-energy electrons endured.
      CubeSat Fortuitously Comes Back to Life to Make the Discovery
      The new discovery was made by NASA’s CIRBE satellite, a CubeSat about the size of a shoebox that circled the planet’s magnetic poles in a low Earth orbit from April 2023 to October 2024. CIRBE housed an instrument called the Relativistic Electron Proton Telescope integrated little experiment-2 (REPTile-2) — a miniaturized and upgraded version of an instrument that flew aboard NASA’s Van Allen Probes, which made the first discovery of a temporary electron belt in 2013.
      The CIRBE CubeSat in the laboratory before launch. CIRBE was designed and built by LASP at the University of Colorado Boulder. Xinlin Li/LASP/CU Boulder After a year in space, the CubeSat experienced an anomaly and unexpectedly went quiet on April 15, 2024. The scientists were disappointed to miss the solar storm in May but were able to rely on other spacecraft to provide some preliminary data on the electron belt. Luckily, on June 15, the spacecraft sprang back to life and resumed taking measurements. The data provided high-resolution information that couldn’t be gleaned by any other instrument and allowed the scientists to understand the magnitude of the new belts.
      “Once we resumed measurements, we were able to see the new electron belt, which wasn’t visible in the data from other spacecraft,” Li said.
      Having the CubeSat in orbit to measure the effect of the solar storm has been bittersweet, Li said. While it provided the opportunity to measure the effects of such a large event, the storm also increased atmospheric drag on the CubeSat, which caused its orbit to decrease prematurely. As a result, the CubeSat deorbited in October 2024. However, the spacecraft’s data makes it all worth it.
      “We are very proud that our very small CubeSat made such a discovery,” Li said.
      CIRBE was designed and built by LASP at the University of Colorado Boulder and was launched through NASA’s CubeSat Launch Initiative (CSLI). The mission is sponsored by NASA’s Heliophysics Flight Opportunities for Research & Technology (H-FORT) program.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Feb 06, 2025 Related Terms
      Heliophysics CubeSats Goddard Space Flight Center Heliophysics Division Ionosphere Space Weather The Sun Van Allen Probes Explore More
      5 min read Straight Shot: Hubble Investigates Galaxy with Nine Rings


      Article


      2 days ago
      2 min read Hubble Spots a Supernova


      Article


      6 days ago
      2 min read Hubble Studies the Tarantula Nebula’s Outskirts


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      (Jan. 13, 2025) Astronaut Nick Hague swaps samples of materials to observe how they burn in weightlessness.Credit: NASA Students from the Thomas Edison EnergySmart Charter School in Somerset, New Jersey, will have the chance to connect with NASA astronaut Nick Hague as he answers prerecorded science, technology, engineering, and mathematics (STEM) related questions from aboard the International Space Station.
      Watch the 20-minute space-to-Earth call at 11:10 a.m. EST on Tuesday, Feb. 11, on NASA+ and learn how to watch NASA content on various platforms, including social media.
      Media interested in covering the event must RSVP by 5 p.m., Thursday, Feb. 6, to Jeanette Allison at: oyildiz@energysmartschool.org or 732-412-7643.
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos and lesson plans highlighting space station research at:
      https://www.nasa.gov/stemonstation
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Sandra Jones 
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Feb 05, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Humans in Space In-flight Education Downlinks ISS Research STEM Engagement at NASA View the full article
    • By NASA
      NASA Stennis representative Dawn Davis, left, interacts with people at the NASA booth during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie NASA reached out to inspire members of the Artemis Generation on Jan. 10-12, joining one of the largest comic con producers in the world to host an outreach booth at the 2025 FAN EXPO in New Orleans.
      Thousands of fans celebrating the best in pop culture such as movies, comics, and video gaming learned about NASA’s Stennis Space Center near Bay St. Louis, Mississippi, and its role to power space dreams.
      NASA Stennis representatives Patricia White, left, and Robert Smith are visited by a functional mock-up of R5-D4, a droid character from the Star Wars film series, during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie NASA Stennis representative Dawn Davis, left, interacts with people at the NASA booth during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie NASA Stennis representative Troy Frisbie, left, is pictured with Colleen Cooper, daughter of L. Gordon Cooper Jr., one of the original Mercury Seven astronauts, during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12. Cooper Jr., selected as a Mercury astronaut in 1959, piloted the “Faith 7” spacecraft in 1963, which concluded the operational phase of Project Mercury. NASA/Patricia White NASA Stennis representative Matt Sappington engages with a comic con fan at the NASA booth during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie NASA Stennis representatives Patricia White, left, and Robert Smith have a conversation with NASA booth visitors during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie A comic con attendee experiences being on the International Space Station with the immersive virtual reality headset at the NASA booth during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie Fans of all ages learn about NASA during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie Attendees learn about the ways people come together in various career fields to achieve mission success at NASA during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie The south Mississippi NASA center operates as NASA’s primary, and America’s largest, rocket propulsion test site. NASA Stennis serves the nation and commercial aerospace sector with its unique capabilities and expertise. In addition to testing rocket engines and stages to power future Artemis missions to the Moon and beyond, NASA Stennis provides a unique location and specialized assets to support the individual missions and work of about 50 federal, state, academic, commercial, and technology-based companies, and organizations.
      In addition to testing rocket engines and stages to power future Artemis missions to the Moon and beyond, NASA Stennis provides a unique location and specialized assets to support the individual missions and work of about 50 federal, state, academic, commercial, and technology-based companies, and organizations.
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4439-4440: A Lunar New Year on Mars
      NASA’s Mars rover Curiosity captured this image, which includes the prominent wedge-shaped block in the foreground, the imaging target dubbed “Vasquez Rocks” — named after a site in Southern California that’s been a popular filming location for movies and television, including several episodes of “Star Trek.” Curiosity acquired this image using its Left Navigation Camera on sol 4437 — Martian day 4,437 of the Mars Science Laboratory mission — on Jan. 29, 2025, at 04:25:25 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Jan. 29, 2025
      We’re planning sols 4439 and 4440 on the first day of the Lunar New Year here on Earth, and I’m the Geology/Mineralogy Science Theme Lead for today. The new year is a time for all kinds of abundance and good luck, and we are certainly lucky to be celebrating another new year on Mars with the Curiosity rover!
      The rover’s current position is on the north side of the “Texoli” butte west of the “Rustic Canyon” crater, and we are on our way southwest through the layered sulfate unit toward a possible boxwork structure that we hope to study later this year. Today’s workspace included a couple of representative bedrock blocks with contrasting textures, so we planned an APXS elemental chemistry measurement on one (“Deer Springs”) and a LIBS elemental measurement on another (“Taco Peak”).
      For imaging, there were quite a few targets in view making it possible to advance a variety of science goals. The ChemCam remote imager was used for a mosaic on “Wilkerson Butte” to observe the pattern of resistant and recessive layering. Mastcam mosaics explored some distant landforms (“Sandstone Peak,” “Wella’s Peak”) as well as fractures, block shapes and textures, and aeolian ripples closer to the rover (“Tahquitz Peak,” “Mount Islip,” “Vasquez Rocks,” “Dawson Saddle”). Our regular environmental science measurements were made as well, to track atmospheric opacity and dust activity. So our planning sols include an abundance of targets indeed.
      Fun fact: Today’s name “Vasquez Rocks” comes from a site on Earth in Southern California that has been a popular spot for science fiction filming, appearing in several episodes of “Star Trek” going back to the original series!
      Written by Lucy Lim, Participating Scientist at Goddard Space Flight Center
      Share








      Details
      Last Updated Jan 31, 2025 Related Terms
      Blogs Explore More
      4 min read Sols 4437-4438: Coordinating our Dance Moves


      Article


      2 days ago
      2 min read Sols 4434-4436: Last Call for Clouds


      Article


      3 days ago
      3 min read What ‘Perseverance’ Means on Mars and for Our NASA Family


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      NASA’s Michoud Assembly Facility in New Orleans, includes 43 acres of manufacturing space under one roof — a space large enough to contain more than 31 professional football fields. Credit: NASA Media are invited to visit NASA’s Michoud Assembly Facility in New Orleans between Tuesday, Feb. 4, and Thursday, Feb. 6, ahead of Super Bowl LIX for an inside look America’s rocket factory, as well as interview agency experts.
      During this behind-the-scenes visit, media will tour NASA’s location for the manufacturing and production of large-scale space structures and see hardware that will carry astronauts back to the Moon as part of the Artemis campaign.
      Registered members of the media will have the opportunity to:
      Capture images and video of hardware NASA Michoud is building for the SLS (Space Launch System) rocket, Orion spacecraft, and SLS exploration upper stage for the agency’s Artemis campaign. Tour special locations around NASA Michoud, one of the largest facilities in the world, with 43 acres of manufacturing space under one roof — a space large enough to contain more than 31 professional football fields. Learn about NASA’s state-of-the-art manufacturing and welding equipment — including the world’s largest friction-stir welding tool. Media must RSVP no later than 6 p.m. EST, Thursday, Jan. 30, to Jonathan Deal at: jonathan.deal@nasa.gov and Craig Betbeze at: craig.c.betbeze@nasa.gov. Please indicate a preferred date to visit between Feb. 4 and Feb. 6. This event is open to U.S. media. NASA’s media accreditation policy is available online.
      Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars.
      Learn more about NASA’s Artemis campaign:
      https://www.nasa.gov/artemis
      -end- 
      Rachel Kraft
      NASA Headquarters, Washington
      202-358-1100
      rachel.h.kraft@nasa.gov
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034 
      jonathan.e.deal@nasa.gov
      Share
      Details
      Last Updated Jan 27, 2025 LocationMarshall Space Flight Center View the full article
  • Check out these Videos

×
×
  • Create New...