Jump to content

NASA Runs X-59 Engine with Maximum Afterburner for First Time


Recommended Posts

  • Publishers
Posted

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

The nearly 100-foot-long X-59 sits partially inside a large run stall, with the rear of the aircraft and its engine extending outside the run stall’s open bay door. Flames are visible from the engine, producing additional thrust during full afterburner tests.
NASA’s X-59 quiet supersonic research aircraft completed its first maximum afterburner test at Lockheed Martin’s Skunk Works facility in Palmdale, California. This full-power test, during which the engine generates additional thrust, validates the additional power needed for meeting the testing conditions of the aircraft. The X-59 is the centerpiece of NASA’s Quesst mission, which aims to overcome a major barrier to supersonic flight over land by reducing the noise of sonic booms.
Lockheed Martin Corporation/Garry Tice

NASA completed the first maximum afterburner engine run test on its X-59 quiet supersonic research aircraft on Dec. 12. The ground test, conducted at Lockheed Martin’s Skunk Works facility in Palmdale, California, marks a significant milestone as the X-59 team progresses toward flight.

An afterburner is a component of some jet engines that generates additional thrust. Running the engine, an F414-GE-100, with afterburner will allow the X-59 to meet its supersonic speed requirements. The test demonstrated the engine’s ability to operate within temperature limits and with adequate airflow for flight. It also showed the engine’s ability to operate in sync with the aircraft’s other subsystems.

The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter. The X-59’s first flight is expected to occur in 2025.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The G-IV aircraft flies overhead in the Mojave Desert near NASA’s Armstrong Flight Research Center in Edwards, California. Baseline flights like this one occurred in June 2024, and future flights in service of science research will benefit from the installment of the Soxnav navigational system, developed in collaboration with NASA’s Jet Propulsion Laboratory in Southern California and the Bay Area Environmental Research Institute in California’s Silicon Valley. This navigational system provides precise, economical aircraft guidance for a variety of aircraft types moving at high speeds.NASA/Carla Thomas NASA and its partners recently tested an aircraft guidance system that could help planes maintain a precise course even while flying at high speeds up to 500 mph. The instrument is Soxnav, the culmination of more than 30 years of development of aircraft navigation systems.
      NASA’s G-IV aircraft flew its first mission to test this navigational system from NASA’s Armstrong Flight Research Center in Edwards, California, in December 2024. The team was composed of engineers from NASA Armstrong, NASA’s Jet Propulsion Laboratory in Southern California, and the Bay Area Environmental Research Institute (BAERI) in California’s Silicon Valley.
      “The objective was to demonstrate this new system can keep a high-speed aircraft within just a few feet of its target track, and to keep it there better than 90% of the time,” said John Sonntag, BAERI independent consultant co-developer of Soxnav.
      With 3D automated steering guidance, Soxnav provides pilots with a precision approach aid for landing in poor visibility. Previous generations of navigational systems laid the technical baseline for Soxnav’s modern, compact, and automated iteration.
      “The G-IV is currently equipped with a standard autopilot system,” said Joe Piotrowski Jr., operations engineer for the G-IV. “But Soxnav will be able to create the exact level flight required for Next Generation Airborne Synthetic Aperture Radar (AirSAR-NG) mission success.”
      Jose “Manny” Rodriguez adjusts the Soxnav instrument onboard the G-IV aircraft in December 2024. As part of the team of experts, Rodriguez ensures that the electronic components of this instrument are installed efficiently. His expertise will help bring the innovative navigational guidance of the Soxnav system to the G-IV and the wider airborne science fleet at NASA. Precision guidance provided by the Soxnav enables research aircraft like the G-IV to collect more accurate, more reliable Earth science data to scientists on the ground.NASA/Steve Freeman Guided by Soxnav, the G-IV may be able to deliver better, more abundant, and less expensive scientific information. For instance, the navigation tool optimizes observations by AirSAR-NG, an instrument that uses three radars simultaneously to observe subtle changes in the Earth’s surface. Together with the Soxnav system, these three radars provide enhanced and more accurate data about Earth science.
      “With the data that can be collected from science flights equipped with the Soxnav instrument, NASA can provide the general public with better support for natural disasters, tracking of food and water supplies, as well as general Earth data about how the environment is changing,” Piotrowski said.
      Ultimately, this economical flight guidance system is intended to be used by a variety of aircraft types and support a variety of present and future airborne sensors. “The Soxnav system is important for all of NASA’s Airborne Science platforms,” said Fran Becker, project manager for the G-IV AirSAR-NG project at NASA Armstrong. “The intent is for the system to be utilized by any airborne science platform and satisfy each mission’s goals for data collection.”
      In conjunction with the other instruments outfitting the fleet of airborne science aircraft, Soxnav facilitates the generation of more abundant and higher quality scientific data about planet Earth. With extreme weather events becoming increasingly common, quality Earth science data can improve our understanding of our home planet to address the challenges we face today, and to prepare for future weather events.
      “Soxnav enables better data collection for people who can use that information to safeguard and improve the lives of future generations,” Sonntag said.
      Share
      Details
      Last Updated Feb 07, 2025 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Airborne Science Armstrong Flight Research Center B200 Earth Science Jet Propulsion Laboratory Explore More
      5 min read NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm
      Key Points The largest solar storm in two decades hit Earth in May 2024. For…
      Article 24 hours ago 2 min read Wind Over Its Wing: NASA’s X-66 Model Tests Airflow
      Article 2 days ago 3 min read NASA’s Cloud-based Confluence Software Helps Hydrologists Study Rivers on a Global Scale
      Rivers and streams wrap around Earth in complex networks millions of miles long, driving trade,…
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Earth Science
      Aircraft Flown at Armstrong
      Armstrong Science Projects
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      2 Min Read More Than 400 Lives Saved with NASA’s Search and Rescue Tech in 2024
      NASA Artemis II crew members are assisted by U.S. Navy personnel as they exit a mockup of the Orion spacecraft in the Pacific Ocean during Underway Recovery Test 11 (URT-11) on Feb. 25, 2024. Credits: NASA/Kenny Allen NASA’s Search and Rescue technologies enabled hundreds of lives saved in 2024.NASA/Dave Ryan Did you know that the same search and rescue technologies developed by NASA for astronaut missions to space help locate and rescue people across the United States and around the world? 
      NASA’s collaboration with the international satellite-aided search and rescue effort known as Cospas-Sarsat has enabled the development of multiple emergency location beacons for explorers on land, sea, and air. 
      Of the 407 lives saved in 2024 through search and rescue efforts in the United States, NOAA (National Oceanic and Atmospheric Administration) reports that 52 rescues were the result of activated personal locator beacons, 314 from emergency position-indicating radio beacons, and 41 from emergency locator transmitters. Since 1982, more than 50,000 lives have been saved across the world. 
      Using GPS satellites, these beacons transmit their location to the Cospas-Sarsat network once activated. The beacons then provide the activation coordinates to the network, allowing first responders to rescue lost or distressed explorers.  
      NASA Artemis II crew members are assisted by U.S. Navy personnel as they exit a mockup of the Orion spacecraft in the Pacific Ocean during Underway Recovery Test 11 (URT-11) on Feb. 25, 2024, while his crewmates look on. URT-11 is the eleventh in a series of Artemis recovery tests, and the first time NASA and its partners put their Artemis II recovery procedures to the test with the astronauts.NASA/Kenny Allen The Search and Rescue Office, part of NASA’s SCaN (Space Communications and Navigation) Program, has assisted in search and rescue services since its formation in 1979 Now, the office is building on their long legacy of Earth-based beacon development to support crewed missions to space. 
      The beacons also are used for emergency location, if needed, as part of NASA’s crew launches to and from the International Space Station, and will support NASA’s Artemis campaign crew recovery preparations during future missions returning from deep space. Systems being tested, like the ANGEL (Advanced Next-Generation Emergency Locator) beacon, are benefitting life on Earth and missions to the Moon and Mars. Most recently, NASA partnered with the Department of Defense to practice Artemis II recovery procedures – including ANGEL beacon activation – during URT-11 (Underway Recovery Test 11).  
      Miniaturized Advanced Next-Generation Emergency Locator (ANGEL) beacons will be attached to the astronauts’ life preserver units. When astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hanse splash back down to Earth — or in the unlikely event of a launch abort scenario — these beacons will allow them to be found if they need to egress from the Orion capsule.NASA The SCaN program at NASA Headquarters in Washington provides strategic oversight to the Search and Rescue office. NOAA manages the U.S. network region for Cospas-Sarsat, which relies on flight and ground technologies originally developed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. U.S. region rescue efforts are led by the U.S. Coast Guard, U.S. Air Force, and many other local rescue authorities. 

      About the Author
      Kendall Murphy
      Technical WriterKendall Murphy is a technical writer for the Space Communications and Navigation program office. She specializes in internal and external engagement, educating readers about space communications and navigation technology.
      Share
      Details
      Last Updated Feb 06, 2025 EditorGoddard Digital TeamContactKatherine Schauerkatherine.s.schauer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
      Goddard Space Flight Center Artemis Communicating and Navigating with Missions Space Communications & Navigation Program Space Communications Technology Explore More
      4 min read NASA Search and Rescue Team Prepares for Safe Return of Artemis II Crew
      When Artemis II NASA astronauts Reid Wiseman, Victor Glover, Christina Hammock Koch, and Canadian Space…
      Article 2 years ago 3 min read NASA Search and Rescue Technology Saves Explorers, Enables Exploration
      Article 1 year ago 4 min read NASA Tests Beacon for Safe Recovery of Astronauts on Artemis Missions
      Article 3 years ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA astronaut Don Pettit aboard the International Space Station. (Credit: NASA) For the first time, NASA is hosting a live Twitch event from about 250 miles off the Earth aboard the International Space Station, bringing new audiences closer to space than ever before. Viewers will have the opportunity to hear from NASA astronauts live and ask questions about life in orbit.
      The event will begin at 11:45 a.m. EST on Wednesday, Feb. 12, livestreamed on the agency’s official Twitch channel:
      https://www.twitch.tv/nasa
      “This Twitch event from space is the first of many,” said Brittany Brown, director, Office of Communications Digital and Technology Division, at NASA Headquarters in Washington. “We spoke with digital creators at TwitchCon about their desire for streams designed with their communities in mind, and we listened. In addition to our spacewalks, launches, and landings, we’ll host more Twitch-exclusive streams like this one. Twitch is one of the many digital platforms we use to reach new audiences and get them excited about all things space.”
      Although NASA has streamed events to Twitch previously, this conversation will be the first NASA event from the International Space Station developed specifically for the agency’s Twitch platform.
      During the event, viewers will hear from NASA astronaut Don Pettit, who is currently aboard the orbiting laboratory, and NASA astronaut Matt Dominick, who recently returned to Earth after the agency’s Crew-8 mission.
      The NASA astronauts will discuss daily life aboard the space station and the research conducted in microgravity. Additionally, the event will highlight ways for Twitch users to engage with NASA, including citizen science projects and science, technology, engineering, and math programs designed to inspire the Artemis Generation.
      NASA is committed to exploring new digital platforms to engage with new audiences. Last year, the agency introduced its own streaming platform, NASA+, and redesigned nasa.gov and science.nasa.gov websites, creating a new homebase for agency news, Artemis information, and more.
      To keep up with the latest news from NASA and learn more about the agency, visit:
      https://www.nasa.gov
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      View the full article
    • By Space Force
      A US space domain awareness payload hosted on Japan's Quasi-Zenith Satellite 6 successfully launched on a Japanese H-3 launch vehicle from the Yoshinobu Launch Complex at the Japan Aerospace Exploration Agency’s Tanegashima Space Center in Japan on February 2.

      View the full article
    • By Space Force
      U.S. Space Forces Korea held the first phase of POLARIS HAMMER – KOREA, a space warfighter inclusive command-and-control exercise, at Osan Air Base, South Korea.

      View the full article
  • Check out these Videos

×
×
  • Create New...