Jump to content

An Evening With the Stars: 10 Years and Counting 


Recommended Posts

  • Publishers
Posted
NASA’s Glenn Research Center leaders stand with Evening With the Stars presenters. The group of five people smile at the camera in front of several floral arrangements.
NASA’s Glenn Research Center leaders stand with Evening With the Stars presenters. Left to right: Tim Smith, Nikki Welch, Center Director Dr. Jimmy Kenyon, Acting Deputy Director Dr. Wanda Peters, and Carlos Garcia-Galan.
Credit: NASA/Jef Janis 

NASA Glenn Research Center’s “An Evening With the Stars” showcased research and technology innovations that addressed this year’s theme, NASA Glenn’s Spotlight on the Stars: 10 Years and Counting. The event featured presentations from Glenn subject matter experts and a networking reception. 

Held at Windows on the River near Cleveland’s historic waterfront on Nov. 20, the event attracted sponsors and guests from more than 50 companies, universities, and organizations eager to learn more about the center’s recent accomplishments.  

Special guests Dennis Andersh, CEO and president of Parallax Advanced Research/Ohio Aerospace Institute; Terrence Slaybaugh, vice president of Sites and Infrastructure for JobsOhio; and Dr. Wanda Peters, NASA Glenn’s acting deputy  director, provided remarks. 

Center Director Dr. Jimmy Kenyon took the stage to welcome visitors and share some accomplishments from an exciting year at NASA Glenn. Kenyon then introduced the presenters – NASA’s stars of the evening – and their topics. 

“I relish this evening each year because it spotlights what is most important to our success at NASA: our people,” Kenyon said.  

Nikki Welch is the digital manager in the Office of Communications. In this role, she helps to tell the NASA Glenn story in engaging ways for Glenn’s hundreds of thousands of followers on social media. Welch shared details about her efforts and the importance of “Connecting People to the Mission.”  

Presenter stands in front of a blue curtain and addresses audience.
NASA Glenn Research Center’s Nikki Welch talks about connecting people to the NASA mission through storytelling.
Credit: NASA/Jef Janis 

Tim Smith leads high-temperature alloy development at NASA Glenn and has led research that resulted in over a dozen research licenses and four commercial licenses. As one of the inventors of the metal alloy GRX-810, Smith shared information about Glenn’s “Super Alloy Achievements.” 

Presenter stands in front of a blue curtain and addresses audience.
NASA Glenn Research Center’s Tim Smith talks about NASA’s superalloy achievements.
Credit: NASA/Jef Janis 

Carlos Garcia-Galan is the manager of the Orion program’s European Service Module Integration Office. This module, being provided by ESA (European Space Agency), is Orion’s powerhouse. Garcia-Galan shared information on the topic “Dreaming of Going to the Moon.”  

Presenter stands in front of a blue curtain and addresses audience.
NASA Glenn Research Center’s Carlos Garcia-Galan talks about the spacecraft that will bring humanity back to the Moon.
Credit: NASA/Jef Janis 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning Since July 2022, NASA’s James Webb Space Telescope has been unwaveringly focused on our universe. With its unprecedented power to detect and analyze otherwise invisible infrared light, Webb is making observations that were once impossible, changing our view of the cosmos from the most distant galaxies to our own solar system.
      Webb was built with the promise of revolutionizing astronomy, of rewriting the textbooks. And by any measure, it has more than lived up to the hype — exceeding expectations to a degree that scientists had not dared imagine. Since science operations began, Webb has completed more than 860 scientific programs, with one-quarter of its time dedicated to imaging and three-quarters to spectroscopy. In just three years, it has collected nearly 550 terabytes of data, yielding more than 1,600 research papers, with intriguing results too numerous to list and a host of new questions to answer.
      Here are just a few noteworthy examples.
      1. The universe evolved significantly faster than we previously thought.
      Webb was specifically designed to observe “cosmic dawn,” a time during the first billion years of the universe when the first stars and galaxies were forming. What we expected to see were a few faint galaxies, hints of what would become the galaxies we see nearby.
      Instead, Webb has revealed surprisingly bright galaxies that developed within 300 million years of the big bang; galaxies with black holes that seem far too massive for their age; and an infant Milky Way-type galaxy that existed when the universe was just 600 million years old. Webb has observed galaxies that already “turned off” and stopped forming stars within a billion years of the big bang, as well as those that developed quickly into modern-looking “grand design” spirals within 1.5 billion years.
      Hundreds of millions of years might not seem quick for a growth spurt, but keep in mind that the universe formed in the big bang roughly 13.8 billion years ago. If you were to cram all of cosmic time into one year, the most distant of these galaxies would have matured within the first couple of weeks, rapidly forming multiple generations of stars and enriching the universe with the elements we see today.
      Image: JADES deep field
      A near-infrared image from NASA’s James Webb Space Telescope shows a region known as the JADES Deep Field. Tens of thousands of galaxies are visible in this tiny patch of sky, including Little Red Dots and hundreds of galaxies that existed more than 13.2 billion years ago, when the universe was less than 600 million years old. Webb also spotted roughly 80 ancient supernovae, many of which exploded when the universe was less than 2 billion years old. This is ten times more supernovae than had ever been discovered before in the early universe. Comparing these supernovae from the distant past with those in the more recent, nearby universe helps us understand how stars in these early times formed, lived, and died, seeding space with the elements for new generations of stars and their planets. NASA, ESA, CSA, STScI, JADES Collaboration 2. Deep space is scattered with enigmatic “Little Red Dots.”
      Webb has revealed a new type of galaxy: a distant population of mysteriously compact, bright, red galaxies dubbed Little Red Dots. What makes Little Red Dots so bright and so red? Are they lit up by dense groupings of unusually bright stars or by gas spiraling into a supermassive black hole, or both? And whatever happened to them? Little Red Dots seem to have appeared in the universe around 600 million years after the big bang (13.2 billion years ago), and rapidly declined in number less than a billion years later. Did they evolve into something else? If so, how? Webb is probing Little Red Dots in more detail to answer these questions.
      3. Pulsating stars and a triply lensed supernova are further evidence that the “Hubble Tension” is real.
      How fast is the universe expanding? It’s hard to say because different ways of calculating the current expansion rate yield different results — a dilemma known as the Hubble Tension. Are these differences just a result of measurement errors, or is there something weird going on in the universe? So far, Webb data indicates that the Hubble Tension is not caused by measurement errors. Webb was able to distinguish pulsating stars from nearby stars in a crowded field, ensuring that the measurements weren’t contaminated by extra light. Webb also discovered a distant, gravitationally lensed supernova whose image appears in three different locations and at three different times during its explosion. Calculating the expansion rate based on the brightness of the supernova at these three different times provides an independent check on measurements made using other techniques. Until the matter of the Hubble Tension is settled, Webb will continue measuring different objects and exploring new methods.
      4. Webb has found surprisingly rich and varied atmospheres on gas giants orbiting distant stars.
      While NASA’s Hubble Space Telescope made the first detection of gases in the atmosphere of a gas giant exoplanet (a planet outside our solar system), Webb has taken studies to an entirely new level. Webb has revealed a rich cocktail of chemicals, including hydrogen sulfide, ammonia, carbon dioxide, methane, and sulfur dioxide — none of which had been clearly detected in an atmosphere outside our solar system before. Webb has also been able to examine exotic climates of gas giants as never before, detecting flakes of silica “snow” in the skies of the puffy, searing-hot gas giant WASP-17 b, for example, and measuring differences in temperature and cloud cover between the permanent morning and evening skies of WASP-39 b.
      Image: Spectrum of WASP-107 b
      A transmission spectrum of the “warm Neptune” exoplanet WASP-107 b captured by NASA’s Hubble and Webb space telescopes, shows clear evidence for water, carbon dioxide, carbon monoxide, methane, sulfur dioxide, and ammonia in the planet’s atmosphere. These measurements allowed researchers to estimate the interior temperature and mass of the core of the planet, as well as understand the chemistry and dynamics of the atmosphere. NASA, ESA, CSA, Ralf Crawford (STScI) 5. A rocky planet 40 light-years from Earth may have an atmosphere fed by gas bubbling up from its lava-covered surface.
      Detecting, let alone analyzing, a thin layer of gas surrounding a small rocky planet is no easy feat, but Webb’s extraordinary ability to measure extremely subtle changes in the brightness of infrared light makes it possible. So far, Webb has been able to rule out significant atmosphere on a number of rocky planets, and has found tantalizing signs of carbon monoxide or carbon dioxide on 55 Cancri e, a lava world that orbits a Sun-like star. With findings like these, Webb is laying the groundwork for NASA’s future Habitable Worlds Observatory, which will be the first mission purpose-built to directly image and search for life on Earth-like planets around Sun-like stars.
      6. Webb exposes the skeletal structure of nearby spiral galaxies in mesmerizing detail.
      We already knew that galaxies are collections of stars, planets, dust, gas, dark matter, and black holes: cosmic cities where stars form, live, die, and are recycled into the next generation. But we had never been able to see the structure of a galaxy and the interactions between stars and their environment in such detail. Webb’s infrared vision reveals filaments of dust that trace the spiral arms, old star clusters that make up galactic cores, newly forming stars still encased in dense cocoons of glowing dust and gas, and clusters of hot young stars carving enormous cavities in the dust. It also elucidates how stellar winds and explosions actively reshape their galactic homes.
      Image: PHANGS Phantom Galaxy (M74/NGC 628)
      A near- to mid-infrared image from NASA’s James Webb Space Telescope highlights details in the complex structure of a nearby galaxy that are invisible to other telescopes. The image of NGC 628, also known as the Phantom Galaxy, shows spiral arms with lanes of warm dust (represented in red), knots of glowing gas (orange-yellow), and giant bubbles (black) carved by hot, young stars. The dust-free core of the galaxy is filled with older, cooler stars (blue). NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), PHANGS team 7. It can be hard to tell the difference between a brown dwarf and a rogue planet.
      Brown dwarfs form like stars, but are not dense or hot enough to fuse hydrogen in their cores like stars do. Rogue planets form like other planets, but have been ejected from their system and no longer orbit a star. Webb has spotted hundreds of brown-dwarf-like objects in the Milky Way, and has even detected some candidates in a neighboring galaxy. But some of these objects are so small — just a few times the mass of Jupiter — that it is hard to figure out how they formed. Are they free-floating gas giant planets instead? What is the least amount of material needed to form a brown dwarf or a star? We’re not sure yet, but thanks to three years of Webb observations, we now know there is a continuum of objects from planets to brown dwarfs to stars.
      8. Some planets might be able to survive the death of their star.
      When a star like our Sun dies, it swells up to form a red giant large enough to engulf nearby planets. It then sheds its outer layers, leaving behind a super-hot core known as a white dwarf. Is there a safe distance that planets can survive this process? Webb might have found some planets orbiting white dwarfs. If these candidates are confirmed, it would mean that it is possible for planets to survive the death of their star, remaining in orbit around the slowly cooling stellar ember.
      9. Saturn’s water supply is fed by a giant fountain of vapor spewing from Enceladus.
      Among the icy “ocean worlds” of our solar system, Saturn’s moon Enceladus might be the most intriguing. NASA’s Cassini mission first detected water plumes coming out of its southern pole. But only Webb could reveal the plume’s true scale as a vast cloud spanning more than 6,000 miles, about 20 times wider than Enceladus itself. This water spreads out into a donut-shaped torus encircling Saturn beyond the rings that are visible in backyard telescopes. While a fraction of the water stays in that ring, the majority of it spreads throughout the Saturnian system, even raining down onto the planet itself. Webb’s unique observations of rings, auroras, clouds, winds, ices, gases, and other materials and phenomena in the solar system are helping us better understand what our cosmic neighborhood is made of and how it has changed over time.
      Video: Water plume and torus from Enceladus
      A combination of images and spectra captured by NASA’s James Webb Space Telescope show a giant plume of water jetting out from the south pole of Saturn’s moon Enceladus, creating a donut-shaped ring of water around the planet.
      Credit: NASA, ESA, CSA, G. Villanueva (NASA’s Goddard Space Flight Center), A. Pagan (STScI), L. Hustak (STScI) 10. Webb can size up asteroids that may be headed for Earth.
      In 2024 astronomers discovered an asteroid that, based on preliminary calculations, had a chance of hitting Earth. Such potentially hazardous asteroids become an immediate focus of attention, and Webb was uniquely able to measure the object, which turned out to be the size of a 15-story building. While this particular asteroid is no longer considered a threat to Earth, the study demonstrated Webb’s ability to assess the hazard.
      Webb also provided support for NASA’s Double Asteroid Redirection Test (DART) mission, which deliberately smashed into the Didymos binary asteroid system, showing that a planned impact could deflect an asteroid on a collision course with Earth. Both Webb and Hubble observed the impact, serving witness to the resulting spray of material that was ejected. Webb’s spectroscopic observations of the system confirmed that the composition of the asteroids is probably typical of those that could threaten Earth.
      —-
      In just three years of operations, Webb has brought the distant universe into focus, revealing unexpectedly bright and numerous galaxies. It has unveiled new stars in their dusty cocoons, remains of exploded stars, and skeletons of entire galaxies. It has studied weather on gas giants, and hunted for atmospheres on rocky planets. And it has provided new insights into the residents of our own solar system.
      But this is only the beginning. Engineers estimate that Webb has enough fuel to continue observing for at least 20 more years, giving us the opportunity to answer additional questions, pursue new mysteries, and put together more pieces of the cosmic puzzle.
      For example: What were the very first stars like? Did stars form differently in the early universe? Do we even know how galaxies form? How do stars, dust, and supermassive black holes affect each other? What can merging galaxy clusters tell us about the nature of dark matter? How do collisions, bursts of stellar radiation, and migration of icy pebbles affect planet-forming disks? Can atmospheres survive on rocky worlds orbiting active red dwarf stars? Is Uranus’s moon Ariel an ocean world?
      As with any scientific endeavor, every answer raises more questions, and Webb has shown that its investigative power is unmatched. Demand for observing time on Webb is at an all-time high, greater than any other telescope in history, on the ground or in space. What new findings await?
      By Dr. Macarena Garcia Marin and Margaret W. Carruthers, Space Telescope Science Institute, Baltimore, Maryland
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Exoplanets



      Universe


      Share








      Details
      Last Updated Jul 02, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Black Holes Brown Dwarfs Exoplanet Science Exoplanets Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Nebulae Science & Research Star-forming Nebulae Stars Studying Exoplanets The Universe View the full article
    • By NASA
      The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Sigrid Reinsch, Lori Munar, Kevin Sims, and Matthew Fladeland. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
      Space Biosciences Star: Sigrid Reinsch
      As Director of the SHINE (Space Health Impacts for the NASA Experience) program and Project Scientist for NBISC (NASA Biological Institutional Scientific Collection), Sigrid Reinsch is a high-performing scientist and outstanding mentor in the Space Biosciences Research Branch. Her dedication to student training and her efforts to streamline processes have significantly improved the experience of welcoming summer interns at NASA Ames.

      Space Science and Astrobiology Star: Lori Munar
      Lori Munar serves as the assistant Branch Chief of the Exobiology Branch. In the past few months, she has gone above and beyond to organize a facility and laboratory surplus event that involved multiple divisions over multiple days. The event resulted in considerable savings across the groups involved and improved the safety of N239 staff and the appearance of offices and labs.
      Space Science and Astrobiology Star: Kevin Sims
      Kevin Sims is a NASA Technical Project Manager serving the Astrophysics Branch as a member of the Flight Systems Implementation Branch in the Space Biosciences Division. Kevin is recognized for outstanding project management for exoplanet imaging instrumentation development in support of the Habitable Worlds Observatory. Kevin has streamlined, organized, and improved the efficiency of the Ames Photonics Testbed being developed as part the AstroPIC Early Career Initiative project.
      Earth Science Star: Matthew Fladeland
      Matthew Fladeland is a research scientist in the Earth Science Division managing NASA SMD’s Program Office for the Airborne Science Program, located at Ames. He is recognized for exemplary leadership and teamwork leading to new reimbursable agreements with the Department of Defense, for accelerating science technology solutions through the SBIR program, and for advancing partnerships with the US Forest Service on wildland ecology and fire science.
      View the full article
    • By European Space Agency
      ESA Delivers: 50 years booklet
      50 hallmark achievements across 50 years
      View the full article
    • By NASA
      Farah Al Fulfulee was just four years old when she started climbing onto the roof of her family’s house in Iraq to gaze at the stars.

      “It scared me how vast and quiet the sky was, but it made me very curious. I grew a deep passion for the stars and constellations and what they might represent,” she said.

      Her father noticed her interest and began bringing home books and magazines about space. Al Fulfulee first read about NASA in those pages and was fascinated by the agency’s mission to explore the cosmos for the benefit of all humanity.

      “Right then I knew I had to be an astronaut! I must go to space myself and get a closer look,” she said. “I knew I must find a way to go and work for NASA and fulfill my dream, working with other people like me who had a passion to explore the universe.”

      Farah Al Fulfulee poses outside the Sonny Carter Training Facility at NASA’s Johnson Space Center in Houston. Image courtesy of Farah Al Fulfulee As a girl growing up in the Middle East, Al Fulfulee had few opportunities to pursue this dream, but she refused to give up. Her dedication to schoolwork and excellence in science and math earned her a spot at the University of Baghdad College of Engineering. She completed a degree in electronic and communication engineering — similar to American electrical and computer engineering programs — and graduated as one of the top 10 students in her class. “We had a graduation party where you dress up as what you want to be in the future,” she recalled. “I wore a spacesuit.”

      Farah Al Fulfulee celebrates her graduation from the University of Baghdad while wearing a spacesuit costume. Image courtesy of Farah Al Fulfulee Al Fulfulee was ready to launch her career, but Iraq did not have a developed space industry and finding work as a female engineer was a challenge. She accepted a project engineer position with a prominent Iraqi engineering firm in the information technology sector and spent four years working for the company in Iraq, Turkey, and Jordan, but she was disappointed to discover that her role involved very little engineering. “I was the only female on the team,” she said. “It was not common for a woman to work in the field or with customers, so I was always left behind to do office work. The job was not fulfilling.”

      Still determined to join NASA, Al Fulfulee kept looking for her chance to come to the United States and finally found one in 2016, when she moved to Oklahoma to be near her sister. A new challenge soon rose: Without a degree from an American school or previous work experience in the United States, engineering opportunities were hard to come by. Al Fulfulee spent the next six years working in quality assurance for a human resources software company while she completed a MicroMasters program in software verification and management from the University of Maryland and honed her English and leadership skills.

      Her big break came in 2022, when she landed a job with Boeing Defense, Space, and Security as a software quality engineer. “I was so excited,” she said. “I knew I was much closer to my dream since Boeing worked in the space industry and I would be able to apply internally to work on a space program.”

      Farah Al Fulfulee participates in a NASA study that evaluated and compared the use of virtual reality and physical mockups to assess space vehicle and systems designs. Image courtesy of Farah Al Fulfulee Less than one year later, Al Fulfulee became a system design and analysis engineer for the International Space Station Program and joined the Station Management and Control Team at NASA’s Johnson Space Center in Houston. She helps develop requirements, monitors performance, and validates testing for electrical systems and software supporting space station payloads. She also designs hardware, software, and interface specifications for those systems. Al Fulfulee has served as the team’s point of contact, delivering verification assessment and data assessment reports for NASA’s SpaceX Crew-9 and Crew-10 missions, as well as the upcoming Axiom Mission 4 flight. She is currently working to support testing and verification for NASA’s SpaceX Crew-11.

      “I could not be happier,” she declared.

      She is also not stopping. “I won’t quit until I wear the blue suit.”

      Farah Al Fulfulee tending to her backyard garden.Image courtesy of Farah Al Fulfulee Al Fulfulee has been an enthusiastic volunteer for various NASA studies, including the Exploration Atmosphere Studies that tested spacewalk safety protocols in an analog environment. She is pursuing a master’s degree in Space Operations Engineering from the University of Colorado, Colorado Springs. She is an avid gardener and learning how to grow produce indoors as a volunteer experimental botanist with the Backyard Produce Project, noting that such knowledge might come in handy on Mars.

      She is also helping to inspire the next generation. Earlier this year, Al Fulfulee was a guest speaker at the Women in Tech & Business Summit in Iraq – an event designed to encourage Iraqi women to pursue technology careers. “I was the only person representing women in space,” she said. “It was a really moving experience.” Al Fulfulee provided practical advice on breaking barriers in aerospace and shared her story with the crowd.

      “I know my path is long and across the continents,” she said, “but I am enjoying my journey.”

      Explore More
      5 min read Johnson’s Jason Foster Recognized for New Technology Reporting Record
      Article 1 day ago 4 min read NASA, DoD Practice Abort Scenarios Ahead of Artemis II Moon Mission
      Article 4 days ago 4 min read Welcome Home, Expedition 72 Crew! 
      Article 6 days ago View the full article
    • By Space Force
      Second Lt. Katherine Hendl escorted the remains of her great-great-uncle, a U.S. Army Air Forces gunner killed in action during World War II, home to Massachusetts nearly 80 years after he was declared missing in action.

      View the full article
  • Check out these Videos

×
×
  • Create New...